Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals

Adrian Klein and Horst Bleckmann
Beilstein J. Nanotechnol. 2011, 2, 276–283. https://doi.org/10.3762/bjnano.2.32

Cite the Following Article

Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals
Adrian Klein and Horst Bleckmann
Beilstein J. Nanotechnol. 2011, 2, 276–283. https://doi.org/10.3762/bjnano.2.32

How to Cite

Klein, A.; Bleckmann, H. Beilstein J. Nanotechnol. 2011, 2, 276–283. doi:10.3762/bjnano.2.32

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Seo, D.; Yoon, S.; Park, J.; Lee, S.; Han, S.; Byun, S.-H.; Oh, S. Optical Flow Sensor with Fluorescent-Conjugated Hyperelastic Pillar: A Biomimetic Approach. Biomimetics 2024, 9, 721. doi:10.3390/biomimetics9120721
  • Zimmermann, C. A.; Amouzou, K. N.; Ung, B. Recent Advances in PDMS Optical Waveguides: Properties, Fabrication, and Applications. Advanced Optical Materials 2024. doi:10.1002/adom.202401975
  • Sun, W.; He, G.; Wang, Q. Analysis of motion performance and motion mode recognition in filament propulsion. Journal of Physics: Conference Series 2024, 2865, 12051–012051. doi:10.1088/1742-6596/2865/1/012051
  • Zhao, Z.; Yang, Q.; Li, R.; Yang, J.; Liu, Q.; Zhu, B.; Weng, C.; Liu, W.; Hu, P.; Ma, L.; Qiao, J.; Xu, M.; Tian, H. A comprehensive review on the evolution of bio-inspired sensors from aquatic creatures. Cell Reports Physical Science 2024, 5, 102064. doi:10.1016/j.xcrp.2024.102064
  • Bleckmann, H. The incomparable fascination of comparative physiology: 40 years with animals in the field and laboratory. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology 2023, 210, 211–226. doi:10.1007/s00359-023-01681-3
  • Seo, D.; Oh, S.; Byun, S.-H. Image Analysis for the Simultaneous Measurement of Underwater Flow Velocity and Direction. JOURNAL OF SENSOR SCIENCE AND TECHNOLOGY 2023, 32, 307–312. doi:10.46670/jsst.2023.32.5.307
  • Bleckmann, H. Life along the fish lateral line and beyond. The Journal of the Acoustical Society of America 2023, 154, 1274–1286. doi:10.1121/10.0020661
  • Gong, Z.; Cao, Y.; Cao, H.; Wan, B.; Yang, Z.; Ke, X.; Zhang, D.; Chen, H.; Wang, K.; Jiang, Y. Morphological Intelligence Mechanisms in Biological and Biomimetic Flow Sensing. Advanced Intelligent Systems 2023, 5. doi:10.1002/aisy.202300154
  • Qiao, Q.; Kong, X.; Wu, S.; Liu, G.; Zhang, G.; Yang, H.; Zhang, W.; Yang, Y.; Jia, L.; He, C.; Cui, J.; Wang, R. A Bio-Inspired MEMS Wake Detector for AUV Tracking and Coordinated Formation. Remote Sensing 2023, 15, 2949. doi:10.3390/rs15112949
  • Liu, Y.; Hu, Q.; Yang, Q.; Fu, T. Underwater variable frequency vibrating dipole detection of artificial lateral line based on the joint time-frequency analysis. Sensors and Actuators A: Physical 2022, 347, 113914. doi:10.1016/j.sna.2022.113914
  • Smith, C.; Laun, A.; DeVries, L.; Fredriksson, D. W.; Murray, M. Design and Development of a Bioinspired Lateral Line Sensor for Uncrewed Underwater Vehicle Operations. In OCEANS 2022, Hampton Roads, IEEE, 2022; pp 1–10. doi:10.1109/oceans47191.2022.9977279
  • Kang, S.; Chou, W.; Yu, J. Estimation System of Disturbance Force and Torque for Underwater Robot Based on Artificial Lateral Line. Applied Sciences 2022, 12, 3060. doi:10.3390/app12063060
  • Wang, M.; Jin, B.; Liu, G.; Li, Z. The moving vibration source perception using bionic lateral line system and data-driven method. Ocean Engineering 2022, 247, 110463. doi:10.1016/j.oceaneng.2021.110463
  • Jiang, Y.; Gong, Z.; Yang, Z.; Ma, Z.; Wang, C.; Wang, Y.; Zhang, D. Underwater Source Localization Using an Artificial Lateral Line System With Pressure and Flow Velocity Sensor Fusion. IEEE/ASME Transactions on Mechatronics 2022, 27, 245–255. doi:10.1109/tmech.2021.3062869
  • Shizhe, T.; Yijin, W. An Artificial Lateral Line Sensor Using Polyvinylidene Fluoride (PVDF) Membrane for Oscillatory Flow Sensing. IEEE Access 2022, 10, 15771–15785. doi:10.1109/access.2022.3148165
  • García-Vega, A.; Fuentes-Pérez, J. F.; Fukuda, S.; Kruusmaa, M.; Sanz-Ronda, F. J.; Tuhtan, J. A. Artificial lateral line for aquatic habitat modelling: An example for Lefua echigonia. Ecological Informatics 2021, 65, 101388. doi:10.1016/j.ecoinf.2021.101388
  • Dagamseh, A. Reliability Investigation of Bioinspired Hair Flow-Sensor. IEEE Sensors Journal 2021, 21, 22544–22552. doi:10.1109/jsen.2021.3110770
  • Zhai, Y.; Zheng, X.; Xie, G. Fish Lateral Line Inspired Flow Sensors and Flow-aided Control: A Review. Journal of Bionic Engineering 2021, 18, 264–291. doi:10.1007/s42235-021-0034-y
  • Tran, L.-G.; Park, W.-T. Biomimetic Flow Sensor for Detecting Flow Rate and Direction as an Application for Maneuvering Autonomous Underwater Vehicle. International Journal of Precision Engineering and Manufacturing-Green Technology 2020, 9, 163–173. doi:10.1007/s40684-020-00282-8
  • Tran, L.-G.; Park, W.-T. Biomimetic Flow Sensor for Detecting Flow Rate and Direction as an Application for Maneuvering Autonomous Underwater Vehicle. International Journal of Precision Engineering and Manufacturing-Green Technology 2020, 1–11.
Other Beilstein-Institut Open Science Activities