The effect of surface anisotropy in the slippery zone of Nepenthes alata pitchers on beetle attachment

Elena V. Gorb and Stanislav N. Gorb
Beilstein J. Nanotechnol. 2011, 2, 302–310. https://doi.org/10.3762/bjnano.2.35

Cite the Following Article

The effect of surface anisotropy in the slippery zone of Nepenthes alata pitchers on beetle attachment
Elena V. Gorb and Stanislav N. Gorb
Beilstein J. Nanotechnol. 2011, 2, 302–310. https://doi.org/10.3762/bjnano.2.35

How to Cite

Gorb, E. V.; Gorb, S. N. Beilstein J. Nanotechnol. 2011, 2, 302–310. doi:10.3762/bjnano.2.35

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zhang, J.; Guang, J.; Chen, C.; Sadik, S. Superwetting materials for fog collection: From single function to smart responsive: A review. Chemical Engineering Science 2024, 302, 120893. doi:10.1016/j.ces.2024.120893
  • Gorb, E. V.; Gorb, S. N. Micro- and Nanotribology at the Insect-Plant Interface. NanoScience and Technology; Springer International Publishing, 2024; pp 425–452. doi:10.1007/978-3-031-63065-1_19
  • Filippov, A.; Gorb, S. Numerical model of the locomotion of oscillating 'robots' with frictional anisotropy on differently-structured surfaces. Scientific reports 2024, 14, 19693. doi:10.1038/s41598-024-70578-1
  • Casey, M.; Dano, F.; Busch, T.; Aboud, D. G. K.; Kietzig, A.-M. Investigating the Effects of Lubricant Infusion Methods on Polymer SLIPS. ACS applied materials & interfaces 2024, 16, 37328–37337. doi:10.1021/acsami.4c09014
  • Preuss, A.; Büscher, T. H.; Herzog, I.; Wohlsein, P.; Lehnert, K.; Gorb, S. N. Attachment performance of the ectoparasitic seal louse Echinophthirius horridus. Communications biology 2024, 7, 36. doi:10.1038/s42003-023-05722-0
  • Zhai, F.; Ji, Z. Vat photopolymerization 3D printing of stimuli-responsive polymer. Vat Photopolymerization Additive Manufacturing; Elsevier, 2024; pp 145–194. doi:10.1016/b978-0-443-15487-4.00015-7
  • Zhao, T.; Wang, Y.; He, Y.; Zhu, Y.; Li, M. Numerical Simulation and Experimental Investigation on Tribological Properties of Gear Alloy Surface Biomimetic Texture. Tribology Transactions 2023, 66, 610–622. doi:10.1080/10402004.2023.2194941
  • Zhang, X.; Gan, L.; Sun, B.; Liu, Z.; Liao, G.; Shi, T. Bio-inspired manufacturing of superwetting surfaces for fog collection and anti-icing applications. Science China Technological Sciences 2022, 65, 1975–1994. doi:10.1007/s11431-022-2101-9
  • Roth-Nebelsick, A. How much biology is in the product? Role and relevance of biological evolution and function for bio-inspired design. Theory in biosciences = Theorie in den Biowissenschaften 2022, 141, 233–247. doi:10.1007/s12064-022-00367-9
  • Wang, L.; Pan, P.; Yan, S.; Dong, S. Contact angle of Nepenthes slippery zone: results from measurement and model analysis. Bioinspired, Biomimetic and Nanobiomaterials 2021, 10, 114–122. doi:10.1680/jbibn.21.00019
  • Kang, V.; Isermann, H.; Sharma, S.; Wilson, D. I.; Federle, W. How a sticky fluid facilitates prey retention in a carnivorous pitcher plant (Nepenthes rafflesiana). Acta biomaterialia 2021, 128, 357–369. doi:10.1016/j.actbio.2021.04.002
  • Kang, V.; Isermann, H.; Sharma, S.; Wilson, D.; Federle, W. How a sticky fluid facilitates prey retention in a carnivorous pitcher plant (Nepenthes rafflesiana). Cold Spring Harbor Laboratory 2021. doi:10.1101/2021.03.13.434712
  • Fang, Y.; Liang, J.; Bai, X.; Yong, J.; Huo, J.; Yang, Q.; Hou, X.; Chen, F. Magnetically Controllable Isotropic/Anisotropic Slippery Surface for Flexible Droplet Manipulation. Langmuir : the ACS journal of surfaces and colloids 2020, 36, 15403–15409. doi:10.1021/acs.langmuir.0c03008
  • Schwallier, R.; van Wely, V.; Baak, M.; Vos, R. A.; van Heuven, B. J.; Smets, E.; van Vugt, R. R.; Gravendeel, B. Ontogeny and Anatomy of the Dimorphic Pitchers of Nepenthes rafflesiana Jack. Plants (Basel, Switzerland) 2020, 9, 1603. doi:10.3390/plants9111603
  • Lixin, W.; Zhang, S.; Zhang, L.; Li, S. Frictional properties of the wax coverings in Nepenthes alata slippery zone: results from AFM scanning. Sains Malaysiana 2020, 49, 1491–1498. doi:10.17576/jsm-2020-4907-02
  • Filippov, A. E.; Gorb, S. N. Anisotropic Friction in Biological Systems. Biologically-Inspired Systems; Springer International Publishing, 2020; pp 143–175. doi:10.1007/978-3-030-41528-0_5
  • Wang, L.; Zhang, S.; Li, S.; Yan, S.; Dong, S. Inner surface of Nepenthes slippery zone: ratchet effect of lunate cells causes anisotropic superhydrophobicity. Royal Society open science 2020, 7, 200066. doi:10.1098/rsos.200066
  • Guo, L.; Tang, G.; Kumar, S. Droplet Morphology and Mobility on Lubricant-Impregnated Surfaces: A Molecular Dynamics Study. Langmuir : the ACS journal of surfaces and colloids 2019, 35, 16377–16387. doi:10.1021/acs.langmuir.9b02603
  • Stutz, H. H.; Martínez, A.; Heepe, L.; Tramsen, H. T.; Gorb, S. N. Strength anisotropy at soil-structure interfaces with snake skin inspired structural surfaces. E3S Web of Conferences 2019, 92, 13008. doi:10.1051/e3sconf/20199213008
  • Grohmann, C.; Hartmann, J. N.; Kovalev, A.; Gorb, S. N. Dandelion diaspore dispersal: frictional anisotropy of cypselae of Taraxacum officinale enhances their interlocking with the soil. Plant and Soil 2019, 440, 399–408. doi:10.1007/s11104-019-04086-x
Other Beilstein-Institut Open Science Activities