Simulation of bonding effects in HRTEM images of light element materials

Simon Kurasch, Jannik C. Meyer, Daniela Künzel, Axel Groß and Ute Kaiser
Beilstein J. Nanotechnol. 2011, 2, 394–404. https://doi.org/10.3762/bjnano.2.45

Supporting Information

Supporting Information File 1: WIEN2k convergence tests for ideal graphene
Format: PDF Size: 289.1 KB Download
Supporting Information File 2: Program to get 3D WIEN2k potentials (Phyton script, rename to .py).
Format: TXT Size: 7.5 KB Download

Cite the Following Article

Simulation of bonding effects in HRTEM images of light element materials
Simon Kurasch, Jannik C. Meyer, Daniela Künzel, Axel Groß and Ute Kaiser
Beilstein J. Nanotechnol. 2011, 2, 394–404. https://doi.org/10.3762/bjnano.2.45

How to Cite

Kurasch, S.; Meyer, J. C.; Künzel, D.; Groß, A.; Kaiser, U. Beilstein J. Nanotechnol. 2011, 2, 394–404. doi:10.3762/bjnano.2.45

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Han, J.; Guan, J. Applications of single-site iron nanozymes in biomedicine. Coordination Chemistry Reviews 2023, 490, 215209. doi:10.1016/j.ccr.2023.215209
  • Ghosh, C.; Singh, M. K.; Parida, S.; Dobley, A.; Dongare, A. M.; Carter, C. B. Characterizing Li in partially lithiated layer materials using atomic-resolution imaging, modeling, and simulation. Journal of the American Ceramic Society 2021, 105, 1581–1595. doi:10.1111/jace.18189
  • Raffone, F.; Savazzi, F.; Cicero, G. Molecular dynamics study of the pore formation in single layer graphene oxide by a thermal reduction process. Physical chemistry chemical physics : PCCP 2021, 23, 11831–11836. doi:10.1039/d1cp00134e
  • Madsen, J.; Susi, T. The abTEM code: transmission electron microscopy from first principles. Open research Europe 2021, 1, 24. doi:10.12688/openreseurope.13015.2
  • Madsen, J.; Susi, T. The abTEM code: transmission electron microscopy from first principles. Open Research Europe 2021, 1, 24. doi:10.12688/openreseurope.13015.1
  • Madsen, J.; Pennycook, T. J.; Susi, T. ab initio description of bonding for transmission electron microscopy. Ultramicroscopy 2021, 231, 113253. doi:10.1016/j.ultramic.2021.113253
  • Madsen, J.; Susi, T. abTEM: ab Initio Transmission Electron Microscopy Image Simulation. Microscopy and Microanalysis 2020, 26, 448–450. doi:10.1017/s1431927620014701
  • Hofer, C.; Skakalova, V.; Görlich, T.; Tripathi, M.; Mittelberger, A.; Mangler, C.; Monazam, M. R. A.; Susi, T.; Kotakoski, J.; Meyer, J. C. Direct imaging of light-element impurities in graphene reveals triple-coordinated oxygen. Nature communications 2019, 10, 4570. doi:10.1038/s41467-019-12537-3
  • Susi, T.; Madsen, J.; Ludacka, U.; Mortensen, J. J.; Pennycook, T. J.; Lee, Z.; Kotakoski, J.; Kaiser, U.; Meyer, J. C. Efficient first principles simulation of electron scattering factors for transmission electron microscopy. Ultramicroscopy 2018, 197, 16–22. doi:10.1016/j.ultramic.2018.11.002
  • Ren, X.-Y.; Xia, S.; Li, X.-B.; Chen, N.-K.; Wang, X.-P.; Wang, D.; Chen, Z.; Zhang, S.; Sun, H.-B. Non-phase-separated 2D B–C–N alloys via molecule-like carbon doping in 2D BN: atomic structures and optoelectronic properties. Physical chemistry chemical physics : PCCP 2018, 20, 23106–23111. doi:10.1039/c8cp03028f
  • Kwak, J.; Jo, Y.; Park, S.-D.; Kim, N. Y.; Kim, S.-Y.; Shin, H.-J.; Lee, Z.; Kim, S. Y.; Kwon, S.-Y. Oxidation behavior of graphene-coated copper at intrinsic graphene defects of different origins. Nature communications 2017, 8, 1549. doi:10.1038/s41467-017-01814-8
  • Naginey, T.; Nellist, P.; Nicholls, R.; Yates, J. doi:10.1002/9783527808465.emc2016.6132
  • Nakamura, A.; Gu, Y.; Taniguchi, K.; Shibata, N.; Takagi, H.; Ikuhara, Y. Phase Interface Structures in Li1+xRh2O4 Zero Strain Cathode Material Analyzed by Scanning Transmission Electron Microscopy. Chemistry of Materials 2015, 27, 938–943. doi:10.1021/cm5042106
  • Yamada, Y.; Murota, K.; Fujita, R.; Kim, J.; Watanabe, A.; Nakamura, M.; Sato, S.; Hata, K.; Ercius, P.; Ciston, J.; Song, C. Y.; Kim, K.; Regan, W.; Gannett, W.; Zettl, A. Subnanometer vacancy defects introduced on graphene by oxygen gas. Journal of the American Chemical Society 2014, 136, 2232–2235. doi:10.1021/ja4117268
  • Susi, T.; Kotakoski, J.; Arenal, R.; Kurasch, S.; Jiang, H.; Skakalova, V.; Stéphan, O.; Krasheninnikov, A. V.; Kauppinen, E. I.; Kaiser, U.; Meyer, J. C. Atomistic Description of Electron Beam Damage in Nitrogen-Doped Graphene and Single-Walled Carbon Nanotubes. ACS nano 2012, 6, 8837–8846. doi:10.1021/nn303944f
  • Quinn, M. D. J. Ph.D. Thesis, . doi:10.25911/5d514404ade3d
Other Beilstein-Institut Open Science Activities