Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy–magnetic force microscopy combination

Miriam Jaafar, Oscar Iglesias-Freire, Luis Serrano-Ramón, Manuel Ricardo Ibarra, Jose Maria de Teresa and Agustina Asenjo
Beilstein J. Nanotechnol. 2011, 2, 552–560. https://doi.org/10.3762/bjnano.2.59

Supporting Information

Supporting Information File 1: Topography of the nanostructure.
Format: PDF Size: 230.5 KB Download
Supporting Information File 2: MFM images.
Format: PDF Size: 549.6 KB Download

Cite the Following Article

Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy–magnetic force microscopy combination
Miriam Jaafar, Oscar Iglesias-Freire, Luis Serrano-Ramón, Manuel Ricardo Ibarra, Jose Maria de Teresa and Agustina Asenjo
Beilstein J. Nanotechnol. 2011, 2, 552–560. https://doi.org/10.3762/bjnano.2.59

How to Cite

Jaafar, M.; Iglesias-Freire, O.; Serrano-Ramón, L.; Ibarra, M. R.; de Teresa, J. M.; Asenjo, A. Beilstein J. Nanotechnol. 2011, 2, 552–560. doi:10.3762/bjnano.2.59

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Escalante-Quiceno, A. T.; Fernández, V. V.; Martín, J. I.; Hierro-Rodriguez, A.; Hlawacek, G.; Jaafar, M.; Asenjo, A.; Magén, C.; De Teresa, J. M. Focused electron beam induced deposition of magnetic tips for improved magnetic force microscopy. Low Temperature Physics 2024, 50, 825–833. doi:10.1063/10.0028622
  • Marqués-Marchán, J.; Jaafar, M.; Ares, P.; Gubieda, A. G.; Berganza, E.; Abad, A.; Fdez-Gubieda, M. L.; Asenjo, A. Magnetic imaging of individual magnetosome chains in magnetotactic bacteria. Biomaterials advances 2024, 163, 213969. doi:10.1016/j.bioadv.2024.213969
  • Christensen, D. V.; Staub, U.; Devidas, T. R.; Kalisky, B.; Nowack, K. C.; Webb, J. L.; Andersen, U. L.; Huck, A.; Broadway, D. A.; Wagner, K.; Maletinsky, P.; van der Sar, T.; Du, C. R.; Yacoby, A.; Collomb, D.; Bending, S.; Oral, A.; Hug, H. J.; Mandru, A.-O.; Neu, V.; Schumacher, H. W.; Sievers, S.; Saito, H.; Khajetoorians, A. A.; Hauptmann, N.; Baumann, S.; Eichler, A.; Degen, C. L.; McCord, J.; Vogel, M.; Fiebig, M.; Fischer, P.; Hierro-Rodriguez, A.; Finizio, S.; Dhesi, S. S.; Donnelly, C.; Büttner, F.; Kfir, O.; Hu, W.; Zayko, S.; Eisebitt, S.; Pfau, B.; Frömter, R.; Kläui, M.; Yasin, F. S.; McMorran, B. J.; Seki, S.; Yu, X.; Lubk, A.; Wolf, D.; Pryds, N.; Makarov, D.; Poggio, M. 2024 roadmap on magnetic microscopy techniques and their applications in materials science. Journal of Physics: Materials 2024, 7, 32501–032501. doi:10.1088/2515-7639/ad31b5
  • Slathia, S.; Wei, C.; Tripathi, M.; Tromer, R.; Negedu, S. D.; Boland, C. S.; Sarkar, S.; Galvao, D. S.; Dalton, A.; Tiwary, C. S. Thickness dependent tribological and magnetic behavior of two-dimensional cobalt telluride (CoTe2). 2D Materials 2024, 11, 35006. doi:10.1088/2053-1583/ad3cec
  • Caso, D.; Serrano, A.; Jaafar, M.; Prieto, P.; Kamra, A.; González-Ruano, C.; Aliev, F. G. Microwave Field-Induced Changes in Raman Modes and Magnetic Force Images of Antiferromagnetic NiO Films. Condensed Matter 2024, 9, 7. doi:10.3390/condmat9010007
  • Jahng, J.; Lee, S.; Hong, S.-G.; Lee, C. J.; Menabde, S. G.; Jang, M. S.; Kim, D.-H.; Son, J.; Lee, E. S. Characterizing and controlling infrared phonon anomaly of bilayer graphene in optical-electrical force nanoscopy. Light, science & applications 2023, 12, 281. doi:10.1038/s41377-023-01320-1
  • Temiryazev, A. G.; Temiryazeva, M. P. Some Methods for Improving the Quality of Magnetic Force Microscopy Images. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 2023, 17, 1022–1027. doi:10.1134/s1027451023050129
  • Winkler, R.; Ciria, M.; Ahmad, M.; Plank, H.; Marcuello, C. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies. Nanomaterials (Basel, Switzerland) 2023, 13, 2585. doi:10.3390/nano13182585
  • Temiryazev, A. G.; Temiryazeva, M. P. Some Methods for Improving the Quality of Magnetic Force Microscopy Images. Поверхность. Рентгеновские, синхротронные и нейтронные исследования 2023, 89–95. doi:10.31857/s1028096023090121
  • Tetard, L. ACS In Focus; American Chemical Society, 2023. doi:10.1021/acsinfocus.7e7008
  • Hajlaoui, T.; Harnagea, C.; Pignolet, A. Magnetoelectric Coupling in Room Temperature Multiferroic Ba2EuFeNb4O15/BaFe12O19 Epitaxial Heterostructures Grown by Laser Ablation. Nanomaterials (Basel, Switzerland) 2023, 13, 761. doi:10.3390/nano13040761
  • Kilpatrick, J. I.; Kargin, E.; Rodriguez, B. J. Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water. Beilstein journal of nanotechnology 2022, 13, 922–943. doi:10.3762/bjnano.13.82
  • Moldovan, A.; Dinescu, M. Single-pass magnetic force microscopy technique, with topography feedback based on scanning polarization force microscopy. Applied Surface Science 2022, 597, 153747. doi:10.1016/j.apsusc.2022.153747
  • Feng, Y.; Vaghefi, P. M.; Vranjkovic, S.; Penedo, M.; Kappenberger, P.; Schwenk, J.; Zhao, X.; Mandru, A.-O.; Hug, H. Magnetic force microscopy contrast formation and field sensitivity. Journal of Magnetism and Magnetic Materials 2022, 551, 169073. doi:10.1016/j.jmmm.2022.169073
  • Rizzo, D. J.; McLeod, A. S.; Carnahan, C.; Telford, E. J.; Dismukes, A. H.; Wiscons, R. A.; Dong, Y.; Nuckolls, C.; Dean, C. R.; Pasupathy, A. N.; Roy, X.; Xiao, D.; Basov, D. N. Visualizing Atomically Layered Magnetism in CrSBr. Advanced materials (Deerfield Beach, Fla.) 2022, 34, e2201000. doi:10.1002/adma.202201000
  • Çiftçi, H. T.; Verhage, M.; Cromwijk, T.; Pham Van, L.; Koopmans, B.; Flipse, K.; Kurnosikov, O. Enhancing sensitivity in atomic force microscopy for planar tip-on-chip probes. Microsystems & nanoengineering 2022, 8, 51. doi:10.1038/s41378-022-00379-x
  • Vokoun, D.; Samal, S.; Stachiv, I. Magnetic Force Microscopy in Physics and Biomedical Applications. Magnetochemistry 2022, 8, 42. doi:10.3390/magnetochemistry8040042
  • Ming, W.; Huang, B.; Li, J. Decoupling competing electromechanical mechanisms in dynamic atomic force microscopy. Journal of the Mechanics and Physics of Solids 2022, 159, 104758. doi:10.1016/j.jmps.2021.104758
  • Jaafar, M.; Asenjo, A. Unraveling Dissipation-Related Features in Magnetic Imaging by Bimodal Magnetic Force Microscopy. Applied Sciences 2021, 11, 10507. doi:10.3390/app112210507
  • Ehrmann, A.; Blachowicz, T. Magnetic Force Microscopy on Nanofibers—Limits and Possible Approaches for Randomly Oriented Nanofiber Mats. Magnetochemistry 2021, 7, 143. doi:10.3390/magnetochemistry7110143
Other Beilstein-Institut Open Science Activities