Cite the Following Article
Investigation on structural, thermal, optical and sensing properties of meta-stable hexagonal MoO3 nanocrystals of one dimensional structure
Angamuthuraj Chithambararaj and Arumugam Chandra Bose
Beilstein J. Nanotechnol. 2011, 2, 585–592.
https://doi.org/10.3762/bjnano.2.62
How to Cite
Chithambararaj, A.; Bose, A. C. Beilstein J. Nanotechnol. 2011, 2, 585–592. doi:10.3762/bjnano.2.62
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Saini, K.; Sharma, R.; Sharma, A. K.; Pani, B.; Sarkar, A. An exploration of tailoring of hetero-nanostructures of α-MoO3 for efficient electrocatalytic and photocatalytic applications. Catalysis Today 2025, 445, 115092. doi:10.1016/j.cattod.2024.115092
- Juan-Arturo, A. V.; Leonel Mendoza-Martínez, A.; Morales-Luna, G.; Morales-Luna, M. Exploring the optical properties of molybdenum trioxide: approach of theory modeling and depositions techniques. Advances in Physics: X 2025, 10. doi:10.1080/23746149.2025.2451687
- Almodóvar, P.; Álvarez‐Serrano, I.; Llorente, I.; López, M. L.; Chacón, J.; Díaz‐Guerra, C. Nickel‐Doped h‐MoO3 Cathodes: A High‐Performance Material for Aluminum‐Ion Batteries. Battery Energy 2025. doi:10.1002/bte2.20240076
- Huang, Q.; Tang, Z.; Li, F.; Chen, Y.; Teng, C.; Zhu, J.; Yuan, W. Direct mechanical ball milling to preparate MoO3/r-SiC composite by upgrading crystalline silicon wafers from retired photovoltaic modules for enhanced adsorption of dyes: Experiment and mechanism. Applied Surface Science 2025, 687, 162212. doi:10.1016/j.apsusc.2024.162212
- Vasanthi, G.; Dharani, P.; Prabhuraj, T.; Gomathi, A.; Kumar, K. A. R.; Maadeswaran, P. Facile synthesis of PVP surfactant-aided MoO3/g-C3N4 nanocomposites improves the performance of photocatalytic dye degradation and electrocatalytic overall water-splitting bustle. Journal of Materials Science: Materials in Electronics 2024, 35. doi:10.1007/s10854-024-13962-x
- Chang, Y.; Zhang, J.; Babichuk, I. S.; Liu, H.; Liu, Y.; Yang, J. A room-temperature ammonia gas sensor based on the h-MoO3@Graphene composite film with fast response time. Materials Research Bulletin 2024, 179, 112985. doi:10.1016/j.materresbull.2024.112985
- Arooj, N.; Muneer, I.; Ali, D.; Ahmad, S.; Bashir, F.; Hussain, T. Examining enhanced electrochemical performance through analysis of charge storage mechanisms in WO3/Bi2MoO6/rGO nanocomposites. Materials Science and Engineering: B 2024, 306, 117425. doi:10.1016/j.mseb.2024.117425
- Dong, X.; Dang, Y.; Wu, Z.; Tong, Y.; Liu, X.; Lu, Y. Light-to-color conversion on MoO3, WO3, and Bi2WO6: from mechanism to materials and applications. Materials Today Energy 2024, 44, 101632. doi:10.1016/j.mtener.2024.101632
- Kalita, P.; Boruah, P. J.; Pal, A. R.; Bailung, H. Harnessing plasma-generated reactive species for the synthesis of different phases of molybdenum oxide to study adsorption and photocatalytic activity. Dalton transactions (Cambridge, England : 2003) 2024, 53, 11071–11087. doi:10.1039/d4dt01620c
- Nidhi; Prakash, J.; Chauhan, S.; Himanshu, M.; Yadav, K. Impact of Dispersion of V-TiO2/MoSe2/MoO3 Composite on the Dielectric Properties of 8CB Liquid Crystal. Journal of Electronic Materials 2024, 53, 5118–5129. doi:10.1007/s11664-024-11160-3
- Mohamed, R. A.; El-Nahass, M. M.; El-Bakry, M. Y.; El-Dahshan, E.-S. A.; Aamer, E. H.; Habashy, D. M. Investigation of optical properties of molybdenum trioxide (MoO3) thin films using neural networks. The European Physical Journal Plus 2024, 139. doi:10.1140/epjp/s13360-024-05134-x
- Hsu, H.-T.; Lin, S.-Y.; Lu, Y.-T.; Chuang, Y.-Y.; Chuang, S.-H. Enhanced Fenton-like process over Z-scheme MoO3 surface decorated with Fe2O3 under visible light. Scientific reports 2024, 14, 8007. doi:10.1038/s41598-024-58634-2
- Sen, S. K.; Paul, M.; Sakib, M. S. H.; Manir, M. S.; Hoque, K.; Hawlader, R. S.; Hasan, M. R.; Biswas, G. G. The effects of Mn doping on structural, morphological, and optical properties of hydrothermally synthesized h-MoO3 nanorods. Ceramics International 2024, 50, 11565–11574. doi:10.1016/j.ceramint.2024.01.057
- Yu, H.; Fang, H.; Jing, K.; Ma, H.; Wu, L.; Chai, Y. Electrochromic Devices Based on 2D MoO3-x/PEDOT:PSS Composite Film with Boosted Ion Transport. ACS applied materials & interfaces 2024, 16, 18052–18062. doi:10.1021/acsami.4c01108
- Aliannezhadi, M.; Mirsanai, S. Z.; Jamali, M.; Shariatmadar Tehrani, F. Optical and structural properties of bare MoO3 nanobelt, ZnO nanoflakes, and MoO3/ ZnO nanocomposites: The effect of hydrothermal reaction times and molar ratios. Optical Materials 2024, 147, 114619. doi:10.1016/j.optmat.2023.114619
- Mohamed, R. A.; El-Nahass, M. M.; El-Bakry, M. Y.; El-Dahshan, E.-S. A.; Aamer, E. H.; Habashy, D. M. Investigation of experimental for optical properties of molybdenum trioxide (MoO3) thin films using neural networks. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-3538136/v1
- Vargas-Consuelos, C. I.; Camacho-López, M. A.; Ramos-Sanchez, V. H.; Graeve, O. A. Phase and Morphology Control of Hexagonal MoO3 Crystals via Na+ Interactions: A Raman Spectroscopy Study. The Journal of Physical Chemistry C 2023, 127, 13136–13148. doi:10.1021/acs.jpcc.3c02821
- Reidy, K.; Mortelmans, W.; Jo, S. S.; Penn, A. N.; Foucher, A. C.; Liu, Z.; Cai, T.; Wang, B.; Ross, F. M.; Jaramillo, R. Atomic-Scale Mechanisms of MoS2 Oxidation for Kinetic Control of MoS2/MoO3 Interfaces. Nano letters 2023, 23, 5894–5901. doi:10.1021/acs.nanolett.3c00303
- Moghazy, M. A. Leidenfrost green synthesis method for MoO3 and WO3 nanorods preparation: characterization and methylene blue adsorption ability. BMC chemistry 2023, 17, 5. doi:10.1186/s13065-023-00916-3
- McNamara, L.; Waldron, A.; Thomas, M.; Jones, W.; O'Rourke, P.; Darrell, S.; Strange Fessler, K. A. Investigating the hydrolysis of cryogenically layered molybdenum hexafluoride through a disordered hydrogen-bonded network. Physical chemistry chemical physics : PCCP 2023, 25, 2990–2998. doi:10.1039/d2cp04147b
Patents
- SUN XIAOHONG; QIN XIXI; WU MENGJIAO; YANG YI NA; ZHANG SIMIN; GUAN-DONG QILAI; ZHENG CHUNMING. Low-temperature hydrothermal preparation method of molybdenum trioxide nanorod material. CN 103818959 A, May 28, 2014.