An MCBJ case study: The influence of π-conjugation on the single-molecule conductance at a solid/liquid interface

Wenjing Hong, Hennie Valkenier, Gábor Mészáros, David Zsolt Manrique, Artem Mishchenko, Alexander Putz, Pavel Moreno García, Colin J. Lambert, Jan C. Hummelen and Thomas Wandlowski
Beilstein J. Nanotechnol. 2011, 2, 699–713. https://doi.org/10.3762/bjnano.2.76

Cite the Following Article

An MCBJ case study: The influence of π-conjugation on the single-molecule conductance at a solid/liquid interface
Wenjing Hong, Hennie Valkenier, Gábor Mészáros, David Zsolt Manrique, Artem Mishchenko, Alexander Putz, Pavel Moreno García, Colin J. Lambert, Jan C. Hummelen and Thomas Wandlowski
Beilstein J. Nanotechnol. 2011, 2, 699–713. https://doi.org/10.3762/bjnano.2.76

How to Cite

Hong, W.; Valkenier, H.; Mészáros, G.; Manrique, D. Z.; Mishchenko, A.; Putz, A.; García, P. M.; Lambert, C. J.; Hummelen, J. C.; Wandlowski, T. Beilstein J. Nanotechnol. 2011, 2, 699–713. doi:10.3762/bjnano.2.76

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Cai, Z.-Y.; Ma, Z.-W.; Jin, H.; Wang, J.-Z.; Chen, L.-K.; Wu, T.-R.; Sajid, Z.; Zhou, J.-Z.; Wu, D.-Y.; Tian, Z.-Q. Bias switching in single-molecule junctions through destructive quantum interference. Electrochimica Acta 2024, 507, 145136. doi:10.1016/j.electacta.2024.145136
  • Shekhawat, A. S.; Sahu, B.; Diwan, A.; Chaudhary, A.; Shrivastav, A. M.; Srivastava, T.; Kumar, R.; Saxena, S. K. Insight of Employing Molecular Junctions for Sensor Applications. ACS sensors 2024, 9, 5025–5051. doi:10.1021/acssensors.4c02173
  • Yan, C.; Fang, C.; Gan, J.; Wang, J.; Zhao, X.; Wang, X.; Li, J.; Zhang, Y.; Liu, H.; Li, X.; Bai, J.; Liu, J.; Hong, W. From Molecular Electronics to Molecular Intelligence. ACS nano 2024, 18, 28531–28556. doi:10.1021/acsnano.4c10389
  • Toscano-Negrette, R.; León-González, J.; Gil-Corrales, J.; Ojeda, J.; Morales, A.; Eramo, G.; Vinasco, J.; Duque, C. Theoretical study of the thermoelectric properties through a single-molecule junction of Zinc Porphyrin. Physica E: Low-dimensional Systems and Nanostructures 2024, 161, 115970. doi:10.1016/j.physe.2024.115970
  • Alanazi, B.; Alajmi, A.; Aljobory, A.; Lambert, C.; Ismael, A. Tuning quantum interference through molecular junctions formed from cross-linked OPE-3 dimers. Journal of Materials Chemistry C 2024, 12, 6905–6910. doi:10.1039/d4tc00611a
  • Chen, Z.; Grace, I. M.; Woltering, S. L.; Chen, L.; Gee, A.; Baugh, J.; Briggs, G. A. D.; Bogani, L.; Mol, J. A.; Lambert, C. J.; Anderson, H. L.; Thomas, J. O. Quantum interference enhances the performance of single-molecule transistors. Nature nanotechnology 2024, 19, 986–992. doi:10.1038/s41565-024-01633-1
  • Guo, Y.; Li, M.; Zhao, C.; Zhang, Y.; Jia, C.; Guo, X. Understanding Emergent Complexity from a Single-Molecule Perspective. JACS Au 2024, 4, 1278–1294. doi:10.1021/jacsau.3c00845
  • Al-Owaedi, O. A. Thermoelectric Properties of Porphyrin Nano Rings: A Theoretical and Modelling Investigation. Chemphyschem : a European journal of chemical physics and physical chemistry 2024, 25, e202300616. doi:10.1002/cphc.202300616
  • Rashid, U.; Bro-Jørgensen, W.; Harilal, K. B.; Sreelakshmi, P. A.; Mondal, R. R.; Chittari Pisharam, V.; Parida, K. N.; Geetharani, K.; Hamill, J. M.; Kaliginedi, V. Chemistry of the Au-Thiol Interface through the Lens of Single-Molecule Flicker Noise Measurements. Journal of the American Chemical Society 2024, 146, 9063–9073. doi:10.1021/jacs.3c14079
  • Yuan, S.; Zhou, Y.; Gao, T.; Chen, L.; Xu, W.; Duan, P.; Wang, J.; Pan, Z.; Tang, C.; Yang, Y.; Huang, R.; Xiao, Z.; Hong, W. Electric field-driven folding of single molecules. Chinese Chemical Letters 2024, 35, 108404. doi:10.1016/j.cclet.2023.108404
  • Bai, J.; Li, X.; Yang, Y.; Hong, W. Single-molecule measurement at the solid-liquid interfaces. Encyclopedia of Solid-Liquid Interfaces; Elsevier, 2024; pp 565–582. doi:10.1016/b978-0-323-85669-0.00102-1
  • Lazaar, K.; Gueddida, S.; Said, M.; Lebègue, S. Tuning the electronic and optical properties of small organic acenedithiophene molecular crystals for photovoltaic applications: First principles calculations. The Journal of chemical physics 2023, 159. doi:10.1063/5.0171212
  • Chen, F.; Liang, Q.-M.; Lin, L.-X.; Zhang, Q.-C.; Yang, Y. Recent progress in tuning charge transport in single-molecule junctions by substituents. Journal of Materials Chemistry C 2023, 11, 14515–14526. doi:10.1039/d3tc02035e
  • Li, J.; Shen, P.; Zhuang, Z.; Wu, J.; Tang, B. Z.; Zhao, Z. In-situ electro-responsive through-space coupling enabling foldamers as volatile memory elements. Nature communications 2023, 14, 6250. doi:10.1038/s41467-023-42028-5
  • Salthouse, R. J.; Hurtado-Gallego, J.; Grace, I. M.; Davidson, R.; Alshammari, O.; Agraït, N.; Lambert, C. J.; Bryce, M. R. Electronic Conductance and Thermopower of Cross-Conjugated and Skipped-Conjugated Molecules in Single-Molecule Junctions. The journal of physical chemistry. C, Nanomaterials and interfaces 2023, 127, 13751–13758. doi:10.1021/acs.jpcc.3c00742
  • Wei, C.; Xu, W.; Ji, S.; Huang, R.; Liu, J.; Su, W.; Bai, J.; Huang, J.; Hong, W. Single-cluster electronics using metallic clusters: Fabrications, regulations, and applications. Nano Research 2023, 17, 65–78. doi:10.1007/s12274-023-5774-z
  • Dong, X.; Tang, Z.; Zhang, H.; Hu, Y.; Yao, Z.; Huang, R.; Bai, J.; Yang, Y.; Hong, W. Ultrasensitive Detection of Organophosphorus Pesticides Using Single-Molecule Conductance Measurement. Analytical chemistry 2023, 95, 9831–9838. doi:10.1021/acs.analchem.3c00691
  • Lokamani, M.; Kilibarda, F.; Günther, F.; Kelling, J.; Strobel, A.; Zahn, P.; Juckeland, G.; Gothelf, K. V.; Scheer, E.; Gemming, S.; Erbe, A. Stretch Evolution of Electronic Coupling of the Thiophenyl Anchoring Group with Gold in Mechanically Controllable Break Junctions. The journal of physical chemistry letters 2023, 14, 5709–5717. doi:10.1021/acs.jpclett.3c00370
  • Zhu, Y.; Zhou, Y.; Ren, L.; Ye, J.; Wang, H.; Liu, X.; Huang, R.; Liu, H.; Liu, J.; Shi, J.; Gao, P.; Hong, W. Switching Quantum Interference in Single-Molecule Junctions by Mechanical Tuning. Angewandte Chemie (International ed. in English) 2023, 62, e202302693. doi:10.1002/anie.202302693
  • Zhu, Y.; Zhou, Y.; Ren, L.; Ye, J.; Wang, H.; Liu, X.; Huang, R.; Liu, H.; Liu, J.; Shi, J.; Gao, P.; Hong, W. Switching Quantum Interference in Single‐Molecule Junctions by Mechanical Tuning. Angewandte Chemie 2023, 135. doi:10.1002/ange.202302693
Other Beilstein-Institut Open Science Activities