Supporting Information
Supporting Information features detailed information on sample preparations and measurement procedures.
Supporting Information File 1: Experimental details. | ||
Format: PDF | Size: 72.0 KB | Download |
Cite the Following Article
Charge transport in a zinc–porphyrin single-molecule junction
Mickael L. Perrin, Christian A. Martin, Ferry Prins, Ahson J. Shaikh, Rienk Eelkema, Jan H. van Esch, Jan M. van Ruitenbeek, Herre S. J. van der Zant and Diana Dulić
Beilstein J. Nanotechnol. 2011, 2, 714–719.
https://doi.org/10.3762/bjnano.2.77
How to Cite
Perrin, M. L.; Martin, C. A.; Prins, F.; Shaikh, A. J.; Eelkema, R.; van Esch, J. H.; van Ruitenbeek, J. M.; van der Zant, H. S. J.; Dulić, D. Beilstein J. Nanotechnol. 2011, 2, 714–719. doi:10.3762/bjnano.2.77
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Yang, Y.; Li, Y.; Tang, L.; Li, J. Single-Molecule Bioelectronic Sensors with AI-Aided Data Analysis: Convergence and Challenges. Precision Chemistry 2024. doi:10.1021/prechem.4c00048
- Xu, X.; Gao, C.; Emusani, R.; Jia, C.; Xiang, D. Toward Practical Single-Molecule/Atom Switches. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2024, 11, e2400877. doi:10.1002/advs.202400877
- Sawhney, R. S.; Sikri, G. First-Principles Approach to Elucidating Significant Rectification Ratios in Oppositely Charged Dipeptides. Journal of Electronic Materials 2023, 53, 1116–1131. doi:10.1007/s11664-023-10817-9
- Pabi, B.; Marek, Š.; Pal, A.; Kumari, P.; Ray, S. J.; Thakur, A.; Korytár, R.; Pal, A. N. Resonant transport in a highly conducting single molecular junction via metal-metal covalent bond. Nanoscale 2023, 15, 12995–13008. doi:10.1039/d3nr02585c
- Toscano-Negrette, R. G.; León-González, J. C.; Vinasco, J. A.; Ojeda Silva, J. H.; Morales, A. L.; Duque, C. A. Theoretical Study of Thermoelectric Properties of a Single Molecule of Diphenyl-Ether. Condensed Matter 2023, 8, 55. doi:10.3390/condmat8030055
- Zwick, P.; Dulić, D.; van der Zant, H. S. J.; Mayor, M. Porphyrins as building blocks for single-molecule devices. Nanoscale 2021, 13, 15500–15525. doi:10.1039/d1nr04523g
- Huang, X.; Zhang, W.; Xiang, D.; Li, T. doi:10.1002/9783527659562.ch3
- Gonzalez, M. T.; Ismael, A. K.; Garcia-Igleslias, M.; Leary, E.; Rubio-Bollinger, G.; Grace, I.; González-Rodríguez, D.; Torres, T.; Lambert, C. J.; Agraït, N. Interference Controls Conductance in Phthalocyanine Molecular Junctions. The Journal of Physical Chemistry C 2021, 125, 15035–15043. doi:10.1021/acs.jpcc.1c03290
- Nawarat, P.; Beach, K.; Meunier, V.; Terrones, H.; Wang, G.-C.; Lewis, K. M. Voltage-Dependent Barrier Height of Electron Transport through Iron Porphyrin Molecular Junctions. The Journal of Physical Chemistry C 2021, 125, 7350–7357. doi:10.1021/acs.jpcc.0c11319
- Jahangiri, S.; Arrazola, J. M.; Delgado, A. Quantum Algorithm for Simulating Single-Molecule Electron Transport. The journal of physical chemistry letters 2021, 12, 1256–1261. doi:10.1021/acs.jpclett.0c03724
- Naher, M.; Roemer, M.; Koutsantonis, G. A.; Low, P. J. Metal Complexes for Molecular Electronics. Comprehensive Coordination Chemistry III; Elsevier, 2021; pp 38–80. doi:10.1016/b978-0-12-409547-2.14952-2
- Aragonès, A. C.; Martín‐Rodríguez, A.; Aravena, D.; Puigmartí‐Luis, J.; Amabilino, D. B.; Aliaga‐Alcalde, N.; González‐Campo, A.; Ruiz, E.; Díez‐Pérez, I. Tuning Single‐Molecule Conductance in Metalloporphyrin‐Based Wires via Supramolecular Interactions. Angewandte Chemie 2020, 132, 19355–19363. doi:10.1002/ange.202007237
- Aragonès, A. C.; Martín-Rodríguez, A.; Aravena, D.; Puigmartí-Luis, J.; Amabilino, D. B.; Aliaga-Alcalde, N.; González-Campo, A.; Ruiz, E.; Díez-Pérez, I. Tuning Single‐Molecule Conductance in Metalloporphyrin‐Based Wires via Supramolecular Interactions. Angewandte Chemie 2020, 132, 19193–19201.
- Aragonès, A. C.; Martín-Rodríguez, A.; Aravena, D.; Puigmartí-Luis, J.; Amabilino, D. B.; Aliaga-Alcalde, N.; González-Campo, A.; Ruiz, E.; Díez-Pérez, I. Tuning Single-Molecule Conductance in Metalloporphyrin-Based Wires via Supramolecular Interactions. Angewandte Chemie (International ed. in English) 2020, 59, 19193–19201. doi:10.1002/anie.202007237
- Mondal, R.; Bhattacharya, B.; Singh, N. B.; Sarkar, U. Theoretical study of electronic transport through P-porphyrin and S-porphyrin nanoribbons. Journal of molecular graphics & modelling 2020, 97, 107543. doi:10.1016/j.jmgm.2020.107543
- Yang, L.; Wang, X.; Uzma, F.; Zheng, X.; Yan, Y. Evolution of Magnetic Anisotropy of an Organometallic Molecule in a Mechanically Controlled Break Junction: The Roles of Connecting Electrodes. The Journal of Physical Chemistry C 2019, 123, 30754–30764. doi:10.1021/acs.jpcc.9b10156
- Abbassi, M. E.; Zwick, P.; Rates, A.; Stefani, D.; Prescimone, A.; Mayor, M.; van der Zant, H. S. J.; Dulić, D. Unravelling the conductance path through single-porphyrin junctions. Chemical science 2019, 10, 8299–8305. doi:10.1039/c9sc02497b
- Algethami, N.; Sadeghi, H.; Sangtarash, S.; Lambert, C. J. The Conductance of Porphyrin-Based Molecular Nanowires Increases with Length. Nano letters 2018, 18, 4482–4486. doi:10.1021/acs.nanolett.8b01621
- Lu, W.; Ling, W.; Zhang, L.; Xiang, D. Advance of Mechanically Controllable Break Junction for Molecular Electronics. Topics in current chemistry (Cham) 2017, 375, 61. doi:10.1007/s41061-017-0149-0
- Sowa, J. K.; Mol, J. A.; Briggs, G. A. D.; Gauger, E. M. Vibrational effects in charge transport through a molecular double quantum dot. Physical Review B 2017, 95, 085423. doi:10.1103/physrevb.95.085423