Mechanical characterization of carbon nanomembranes from self-assembled monolayers

Xianghui Zhang, André Beyer and Armin Gölzhäuser
Beilstein J. Nanotechnol. 2011, 2, 826–833. https://doi.org/10.3762/bjnano.2.92

Cite the Following Article

Mechanical characterization of carbon nanomembranes from self-assembled monolayers
Xianghui Zhang, André Beyer and Armin Gölzhäuser
Beilstein J. Nanotechnol. 2011, 2, 826–833. https://doi.org/10.3762/bjnano.2.92

How to Cite

Zhang, X.; Beyer, A.; Gölzhäuser, A. Beilstein J. Nanotechnol. 2011, 2, 826–833. doi:10.3762/bjnano.2.92

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Rosenhek-Goldian, I.; Cohen, S. R. Some considerations in nanoindentation measurement and analysis by atomic force microscopy. Journal of Vacuum Science & Technology A 2023, 41. doi:10.1116/6.0003136
  • Balser, S.; Zhao, Z.; Zharnikov, M.; Terfort, A. Effect of the crosslinking agent on the biorepulsive and mechanical properties of polyglycerol membranes. Colloids and surfaces. B, Biointerfaces 2023, 225, 113271. doi:10.1016/j.colsurfb.2023.113271
  • Alsalama, M.; Tong, Y.; Berdiyorov, G.; Esaulov, V.; Hamoudi, H. Refilling strategy of crosslinked aromatic SAMs for enhancing the molecular packing density. Applied Surface Science 2023, 612, 155867. doi:10.1016/j.apsusc.2022.155867
  • Madkour, S. A.; Gawek, M.; Penner, P.; Paneff, F.; Zhang, X.; Gölzhäuser, A.; Schönhals, A. Can Polymers be Irreversibly Adsorbed on Carbon Nanomembranes? A Combined XPS, AFM, and Broadband Dielectric Spectroscopy Study. ACS Applied Polymer Materials 2022, 4, 8377–8385. doi:10.1021/acsapm.2c01320
  • Qi, Y.; Yang, Y.; Westphal, M.; Ennen, I.; Cremer, J.; Anselmetti, D.; Hütten, A.; Gölzhäuser, A.; Dementyev, P. Pyrene‐Derived Carbon Nanomembranes Selectively Pass Metal Ions in Water. Advanced Materials Interfaces 2022, 9. doi:10.1002/admi.202201385
  • Zhao, Z.; Zharnikov, M. Elastic Properties of Poly(ethylene glycol) Nanomembranes and Respective Implications. Membranes 2022, 12, 509. doi:10.3390/membranes12050509
  • Zhao, Z.; Das, S.; Zharnikov, M. Tuning the Properties of Poly(ethylene glycol) Films and Membranes by the Molecular Weight of the Precursors. ACS Applied Polymer Materials 2021, 4, 645–653. doi:10.1021/acsapm.1c01569
  • Ehrens, J.; Gayk, F.; Vorndamme, P.; Heitmann, T.; Biere, N.; Anselmetti, D.; Zhang, X.; Gölzhäuser, A.; Schnack, J. Theoretical formation of carbon nanomembranes under realistic conditions using classical molecular dynamics. Physical Review B 2021, 103, 115416. doi:10.1103/physrevb.103.115416
  • Zhang, X.; Beyer, A. Mechanics of free-standing inorganic and molecular 2D materials. Nanoscale 2021, 13, 1443–1484. doi:10.1039/d0nr07606f
  • Riedel, R.; Frese, N.; Yang, F.; Wortmann, M.; Dalpke, R.; Rhinow, D.; Hampp, N.; Gölzhäuser, A. Fusion of purple membranes triggered by immobilization on carbon nanomembranes. Beilstein journal of nanotechnology 2021, 12, 93–101. doi:10.3762/bjnano.12.8
  • Dalpke, R.; Dreyer, A.; Korzetz, R.; Dietz, K.-J.; Beyer, A. Selective Diffusion of CO2 and H2O through Carbon Nanomembranes in Aqueous Solution as Studied with Radioactive Tracers. The journal of physical chemistry letters 2020, 11, 6737–6741. doi:10.1021/acs.jpclett.0c01821
  • Griffin, E.; Mogg, L.; Hao, G.-P.; Kalon, G.; Bacaksiz, C.; Lopez-Polin, G.; Zhou, T.; Guarochico, V.; Cai, J.-H.; Neumann, C.; Winter, A.; Mohn, M. J.; Lee, J. H.; Lin, J.; Kaiser, U.; Grigorieva, I. V.; Suenaga, K.; Özyilmaz, B.; Cheng, H.-M.; Ren, W.; Turchanin, A.; Peeters, F. M.; Geim, A. K.; Lozada-Hidalgo, M. Proton and Li-Ion Permeation through Graphene with Eight-Atom-Ring Defects. ACS nano 2020, 14, 7280–7286. doi:10.1021/acsnano.0c02496
  • Backes, C.; Abdelkader, A. M.; Alonso, C.; Andrieux-Ledier, A.; Arenal, R.; Azpeitia, J.; Balakrishnan, N.; Banszerus, L.; Barjon, J.; Bartali, R.; Bellani, S.; Berger, C.; Berger, R.; Ortega, M. B.; Bernard, C.; Beton, P. H.; Beyer, A.; Bianco, A.; Bøggild, P.; Bonaccorso, F.; Barin, G. B.; Botas, C.; Bueno, R. A.; Carriazo, D.; Castellanos-Gomez, A.; Christian, M.; Ciesielski, A.; Ciuk, T.; Cole, M. T.; Coleman, J. N.; Coletti, C.; Crema, L.; Cun, H.; Dasler, D.; De Fazio, D.; Díez, N.; Drieschner, S.; Duesberg, G. S.; Fasel, R.; Feng, X.; Fina, A.; Forti, S.; Galiotis, C.; Garberoglio, G.; Garcia, J. M.; Garrido, J. A.; Gibertini, M.; Gölzhäuser, A.; Gómez, J.; Greber, T.; Hauke, F.; Hemmi, A.; Hernández-Rodríguez, I.; Hirsch, A.; Hodge, S. A.; Huttel, Y.; Jepsen, P. U.; Jimenez, I.; Kaiser, U.; Kaplas, T.; Kim, H.; Kis, A.; Papagelis, K.; Kostarelos, K.; Krajewska, A.; Lee, K.; Li, C.; Lipsanen, H.; Liscio, A.; Lohe, M. R.; Loiseau, A.; Lombardi, L.; López, M. F.; Martin, O.; Martín, C.; Martínez, L.; Martín-Gago, J. A.; Martínez, J. I.; Marzari, N.; Mayoral, A.; McManus, J. B.; Melucci, M.; Méndez, J.; Merino, C.; Merino, P.; Meyer, A.; Miniussi, E.; Miseikis, V.; Mishra, N.; Morandi, V.; Munuera, C.; Muñoz, R.; Nolan, H.; Ortolani, L.; Ott, A. K.; Palacio, I.; Palermo, V.; Parthenios, J.; Pasternak, I.; Patanè, A.; Prato, M.; Prevost, H.; Prudkovskiy, V.; Pugno, N. M.; Rojo, T.; Rossi, A.; Ruffieux, P.; Samorì, P.; Schué, L.; Setijadi, E. J.; Seyller, T.; Speranza, G.; Stampfer, C.; Stenger, I.; Strupinski, W.; Svirko, Y.; Taioli, S.; Teo, K. B. K.; Testi, M.; Tomarchio, F.; Tortello, M.; Treossi, E.; Turchanin, A.; Vázquez, E.; Villaro, E.; Whelan, P. R.; Xia, Z.; Yakimova, R.; Yang, S.; Yazdi, G. R.; Yim, C.; Yoon, D.; Zhang, X.; Zhuang, X.; Colombo, L.; Ferrari, A. C.; García-Hernández, M. Production and processing of graphene and related materials. 2D Materials 2020, 7, 022001–022282. doi:10.1088/2053-1583/ab1e0a
  • Hensel, A.; Schröter, C. J.; Schlicke, H.; Schulz, N.; Riekeberg, S.; Trieu, H. K.; Stierle, A.; Noei, H.; Weller, H.; Vossmeyer, T. Elasticity of Cross-Linked Titania Nanocrystal Assemblies Probed by AFM-Bulge Tests. Nanomaterials (Basel, Switzerland) 2019, 9, 1230. doi:10.3390/nano9091230
  • Zhang, X.; Marschewski, E.; Penner, P.; Weimann, T.; Hinze, P.; Beyer, A.; Gölzhäuser, A. Large-Area All-Carbon Nanocapacitors from Graphene and Carbon Nanomembranes. ACS nano 2018, 12, 10301–10309. doi:10.1021/acsnano.8b05490
  • Gayk, F.; Ehrens, J.; Heitmann, T.; Vorndamme, P.; Mrugalla, A.; Schnack, J. Young's moduli of carbon materials investigated by various classical molecular dynamics schemes. Physica E: Low-dimensional Systems and Nanostructures 2018, 99, 215–219. doi:10.1016/j.physe.2018.02.009
  • Zhang, X.; Mainka, M.; Paneff, F.; Hachmeister, H.; Beyer, A.; Gölzhäuser, A.; Huser, T. R. Surface-Enhanced Raman Spectroscopy of Carbon Nanomembranes from Aromatic Self-Assembled Monolayers. Langmuir : the ACS journal of surfaces and colloids 2018, 34, 2692–2698. doi:10.1021/acs.langmuir.7b03956
  • Berger, C.; Phillips, R.; Centeno, A.; Zurutuza, A.; Vijayaraghavan, A. Capacitive pressure sensing with suspended graphene–polymer heterostructure membranes. Nanoscale 2017, 9, 17439–17449. doi:10.1039/c7nr04621a
  • Zhang, X.; Marschewski, E.; Penner, P.; Beyer, A.; Gölzhäuser, A. Investigation of electronic transport through ultrathin carbon nanomembrane junctions by conductive probe atomic force microscopy and eutectic Ga–In top contacts. Journal of Applied Physics 2017, 122, 055103. doi:10.1063/1.4995533
  • Turchanin, A.; Gölzhäuser, A. Carbon Nanomembranes. Advanced materials (Deerfield Beach, Fla.) 2016, 28, 6075–6103. doi:10.1002/adma.201506058

Patents

  • SCHNIEDERS ALBERT. Pellicle. US 11009802 B2, May 18, 2021.
  • GOELZHAEUSER ARMIN; BEYER ANDRE'; PENNER PAUL; ZHANG XIANGHUI. Method of manufacture of a multilayer structure. US 10586651 B2, March 10, 2020.
  • GOELZHAEUSER ARMIN; BEYER ANDRE'; PENNER PAUL; ZHANG XIANGHUI. Multilayer structure. US 10229786 B2, March 12, 2019.
Other Beilstein-Institut Open Science Activities