Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications

Yaron Paz
Beilstein J. Nanotechnol. 2011, 2, 845–861. https://doi.org/10.3762/bjnano.2.94

Cite the Following Article

Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications
Yaron Paz
Beilstein J. Nanotechnol. 2011, 2, 845–861. https://doi.org/10.3762/bjnano.2.94

How to Cite

Paz, Y. Beilstein J. Nanotechnol. 2011, 2, 845–861. doi:10.3762/bjnano.2.94

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zakusilova, V.; Tereshatov, E. E.; Boltoeva, M.; Folden III, C. M. Characterization and application of alkanethiolate self-assembled monolayers on Au-coated chips for Ir(IV) and Rh(III) sorption. Applied Surface Science 2024, 642, 158356. doi:10.1016/j.apsusc.2023.158356
  • Liu, B.-J.; Chen, Q.; Mo, Q.-L.; Xiao, F.-X. Robust, versatile, green and emerging Layer-by-Layer Self-Assembly platform for solar energy conversion. Coordination Chemistry Reviews 2023, 493, 215285. doi:10.1016/j.ccr.2023.215285
  • Thennakoon, C. A.; Rajapakshe, R. B. S. D.; Malikaramage, A. U.; Gamini Rajapakse, R. M. Factors Affecting the Hydrophobic Property of Stearic Acid Self-Assembled on the TiO2 Substrate. ACS omega 2022, 7, 48184–48191. doi:10.1021/acsomega.2c06217
  • Lodha, J. K.; Pollentier, I.; Conard, T.; Vallat, R.; De Gendt, S.; Armini, S. Self-assembled monolayers as inhibitors for area-selective deposition: A novel approach towards resist-less EUV lithography. Applied Surface Science 2022, 606, 154657. doi:10.1016/j.apsusc.2022.154657
  • Prakash, P.; Satheesh, U.; Devaprakasam, D. Photocatalytic and thermolytic “Attenuation – Degradation” mechanisms of perfluoroalkylsilane self assembled on TiO2 nanoparticles. Applied Surface Science 2021, 549, 149278. doi:10.1016/j.apsusc.2021.149278
  • Pawlik, A.; Jarosz, M.; Socha, R. P.; Sulka, G. D. The Impacts of Crystalline Structure and Different Surface Functional Groups on Drug Release and the Osseointegration Process of Nanostructured TiO2. Molecules (Basel, Switzerland) 2021, 26, 1723. doi:10.3390/molecules26061723
  • Liu, T.-L.; Bent, S. F. Area-Selective Atomic Layer Deposition on Chemically Similar Materials: Achieving Selectivity on Oxide/Oxide Patterns. Chemistry of Materials 2021, 33, 513–523. doi:10.1021/acs.chemmater.0c03227
  • Shiel, A. I.; Ayre, W. N.; Blom, A. W.; Hallam, K. R.; Heard, P. J.; Payton, O. D.; Picco, L.; Mansell, J. P. Development of a facile fluorophosphonate-functionalised titanium surface for potential orthopaedic applications. Journal of orthopaedic translation 2020, 23, 140–151. doi:10.1016/j.jot.2020.02.002
  • Baldwin, F.; Craig, T. J.; Shiel, A. I.; Cox, T. I.; Lee, K.; Mansell, J. P. Polydopamine-Lysophosphatidate-Functionalised Titanium: A Novel Hybrid Surface Finish for Bone Regenerative Applications. Molecules (Basel, Switzerland) 2020, 25, 1583. doi:10.3390/molecules25071583
  • Demina, P. A.; Voronin, D. V.; Lengert, E. V.; Abramova, A. V.; Atkin, V. S.; Nabatov, B. V.; Semenov, A. P.; Shchukin, D. G.; Bukreeva, T. Freezing-Induced Loading of TiO2 into Porous Vaterite Microparticles: Preparation of CaCO3/TiO2 Composites as Templates To Assemble UV-Responsive Microcapsules for Wastewater Treatment. ACS omega 2020, 5, 4115–4124. doi:10.1021/acsomega.9b03819
  • Ratova, M.; Sawtell, D.; Kelly, P. Micro-Patterning of Magnetron Sputtered Titanium Dioxide Coatings and Their Efficiency for Photocatalytic Applications. Coatings 2020, 10, 68. doi:10.3390/coatings10010068
  • Etula, J.; Lahtinen, K.; Wester, N.; Iyer, A.; Arstila, K.; Sajavaara, T.; Kallio, T.; Helmersson, U.; Koskinen, J. Room-Temperature Micropillar Growth of Lithium-Titanate-Carbon Composite Structures by Self-Biased Direct Current Magnetron Sputtering for Lithium Ion Microbatteries. Advanced Functional Materials 2019, 29, 1904306. doi:10.1002/adfm.201904306
  • Giesriegl, A.; Blaschke, J.; Naghdi, S.; Eder, D. Rate-Limiting Steps of Dye Degradation over Titania-Silica Core-Shell Photocatalysts. Catalysts 2019, 9, 583. doi:10.3390/catal9070583
  • Das, S.; Hunter, E.; DeLateur, N. A.; Steager, E. B.; Weiss, R.; Kumar, V. Cellular expression through morphogen delivery by light activated magnetic microrobots. Journal of Micro-Bio Robotics 2019, 15, 79–90. doi:10.1007/s12213-019-00119-x
  • Prabavathy, N.; Balasundaraprabhu, R.; Balaji, G.; Malikaramage, A.; Prasanna, S.; Sivakumaran, K.; Kumara, G.; Rajapakse, R.; Velauthapillai, D. Investigations on the photo catalytic activity of calcium doped TiO2 photo electrode for enhanced efficiency of anthocyanins based dye sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 2019, 377, 43–57. doi:10.1016/j.jphotochem.2019.03.038
  • Vandenbroucke, S.; Mattelaer, F.; Jans, K.; Detavernier, C.; Stakenborg, T.; Vos, R. Photocatalytic Lithography with Atomic Layer–Deposited TiO2 Films to Tailor Biointerface Properties. Advanced Materials Interfaces 2019, 6, 1900035. doi:10.1002/admi.201900035
  • Panzarasa, G.; Soliveri, G. Photocatalytic Lithography. Applied Sciences 2019, 9, 1266. doi:10.3390/app9071266
  • Widati, A. A.; Nuryono, N.; Kartini, I. Water-repellent glass coated with SiO 2 –TiO 2 –methyltrimethoxysilane through sol–gel coating. AIMS Materials Science 2019, 6, 10–24. doi:10.3934/matersci.2019.1.10
  • Bronze-Uhle, E. S.; Dias, L. F.; Trino, L. D.; Matos, A. A.; de Oliveira, R. C.; Lisboa-Filho, P. N. Physicochemical bisphosphonate immobilization on titanium dioxide thin films surface by UV radiation for bio-application. Surface and Coatings Technology 2019, 357, 36–47. doi:10.1016/j.surfcoat.2018.09.038
  • Li, P.; Wenjuan, Z.; Ma, W.; Li, X.; Shiqi, L.; Zhao, Y.; Wang, J.; Huang, N. In-situ preparation of amino-terminated dendrimers on TiO2 films by generational growth for potential and efficient surface functionalization. Applied Surface Science 2018, 459, 438–445. doi:10.1016/j.apsusc.2018.08.044

Patents

  • DADHEECH GAYATRI V; SEDER THOMAS A; CARPENTER JAMES A. Method of forming a self-cleaning film system. US 10829665 B2, Nov 10, 2020.
  • PARK YOUNG MIN; KIM HYUN JONG; CHO DEOK HYUN. Method for treating metal surface. KR 20200065796 A, June 9, 2020.
  • THOMAS A SEDER; GAYATRI V DADHEECH; JAMES A CARPENTER. Method of forming a self-cleaning film system. CN 107083184 A, Aug 22, 2017.
  • JAMES A CARPENTER; GAYATRI VYAS DADHEECH; THOMAS A SEDER. Film System And Method Of Forming Same. CN 106477901 A, March 8, 2017.
Other Beilstein-Institut Open Science Activities