Size-dependent phase diagrams of metallic alloys: A Monte Carlo simulation study on order–disorder transitions in Pt–Rh nanoparticles

Johan Pohl, Christian Stahl and Karsten Albe
Beilstein J. Nanotechnol. 2012, 3, 1–11. https://doi.org/10.3762/bjnano.3.1

Cite the Following Article

Size-dependent phase diagrams of metallic alloys: A Monte Carlo simulation study on order–disorder transitions in Pt–Rh nanoparticles
Johan Pohl, Christian Stahl and Karsten Albe
Beilstein J. Nanotechnol. 2012, 3, 1–11. https://doi.org/10.3762/bjnano.3.1

How to Cite

Pohl, J.; Stahl, C.; Albe, K. Beilstein J. Nanotechnol. 2012, 3, 1–11. doi:10.3762/bjnano.3.1

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Jensen, M.; Kierulf-Vieira, W.; Kooyman, P. J.; Sjåstad, A. O. Variable temperature in situ TEM mapping of the thermodynamically stable element distribution in bimetallic Pt-Rh nanoparticles. Nanoscale advances 2023, 5, 5286–5294. doi:10.1039/d3na00448a
  • Castilla-Amorós, L.; Schouwink, P.; Oveisi, E.; Okatenko, V.; Buonsanti, R. Tailoring Morphology and Elemental Distribution of Cu-In Nanocrystals via Galvanic Replacement. Journal of the American Chemical Society 2022, 144, 18286–18295. doi:10.1021/jacs.2c05792
  • Holm, A.; Schmalfuß, J.; Mayr, S. G. Exploring Coupled Martensitic and Order–Disorder Phase Transitions in Fe7Pd3 Shape Memory Alloys Equilibrated Along the Bain Path: An Embedded Atom Method and Ab Initio Based Monte Carlo Study. Advanced Theory and Simulations 2022, 5. doi:10.1002/adts.202100372
  • Chen, P.-C.; Gao, M.; Yu, S.; Jin, J.; Song, C.; Salmeron, M.; Scott, M.; Yang, P. Revealing the Phase Separation Behavior of Thermodynamically Immiscible Elements in a Nanoparticle. Nano letters 2021, 21, 6684–6689. doi:10.1021/acs.nanolett.1c02225
  • Weinreich, J.; Paleico, M. L.; Behler, J. Properties of α-Brass Nanoparticles II: Structure and Composition. The Journal of Physical Chemistry C 2021, 125, 14897–14909. doi:10.1021/acs.jpcc.1c02314
  • Mendoza-Perez, R.; Muhl, S. Phase diagrams of refractory bimetallic nanoalloys. Journal of Nanoparticle Research 2020, 22, 1–15. doi:10.1007/s11051-020-05035-x
  • Franco, A. J.; Jiménez, J. M. G.; Roqué, J.; Proenza, J. A.; Gervilla, F.; Nieto, F. Nanoscale constraints on the in situ transformation of Ru–Os–Ir sulfides to alloys at low temperature. Ore Geology Reviews 2020, 124, 103640. doi:10.1016/j.oregeorev.2020.103640
  • Pan, Y. T.; Yang, H. Design of bimetallic catalysts and electrocatalysts through the control of reactive environments. Nano Today 2020, 31, 100832. doi:10.1016/j.nantod.2019.100832
  • Kaszkur, Z. Thermodynamical Properties of Nanoalloys. Nanoalloys; Elsevier, 2020; pp 193–223. doi:10.1016/b978-0-12-819847-6.00012-7
  • Panasyuk, G. Y.; Yerkes, K. L.; Haugan, T. J. Size effects in energy transport between thermal contacts mediated by nanoparticles. Physical review. E 2019, 99, 032141. doi:10.1103/physreve.99.032141
  • Mavrantzas, V. G.; Pratsinis, S. E. The impact of molecular simulations in gas-phase manufacture of nanomaterials. Current Opinion in Chemical Engineering 2019, 23, 174–183. doi:10.1016/j.coche.2019.04.006
  • Guisbiers, G. Advances in thermodynamic modelling of nanoparticles. Advances in Physics: X 2019, 4, 1668299. doi:10.1080/23746149.2019.1668299
  • Rahm, J. M.; Erhart, P. Understanding Chemical Ordering in Bimetallic Nanoparticles from Atomic-Scale Simulations: The Competition between Bulk, Surface, and Strain. The Journal of Physical Chemistry C 2018, 122, 28439–28445. doi:10.1021/acs.jpcc.8b10874
  • Stein, P.; Moradabadi, A.; Diehm, P. M.; Xu, B.-X.; Albe, K. The influence of anisotropic surface stresses and bulk stresses on defect thermodynamics in LiCoO2 nanoparticles. Acta Materialia 2018, 159, 225–240. doi:10.1016/j.actamat.2018.07.046
  • Chatterjee, D.; Shetty, S.; Müller-Caspary, K.; Grieb, T.; Krause, F. F.; Schowalter, M.; Rosenauer, A.; Ravishankar, N. Ultrathin Au-Alloy Nanowires at the Liquid–Liquid Interface. Nano letters 2018, 18, 1903–1907. doi:10.1021/acs.nanolett.7b05217
  • Guisbiers, G.; Mendoza-Perez, R.; Bazán-Díaz, L.; Mendoza-Cruz, R.; Velázquez-Salazar, J. J.; Jose-Yacaman, M. Size and Shape Effects on the Phase Diagrams of Nickel-Based Bimetallic Nanoalloys. The Journal of Physical Chemistry C 2017, 121, 6930–6939. doi:10.1021/acs.jpcc.6b09115
  • Ghasemi, M.; Johansson, J. Phase diagrams for understanding gold-seeded growth of GaAs and InAs nanowires. Journal of Physics D: Applied Physics 2017, 50, 134002. doi:10.1088/1361-6463/aa601c
  • Ruiz-Ruiz, V. F.; Zumeta-Dubé, I.; Díaz, D.; Arellano-Jiménez, M. J.; Jose-Yacaman, M. Can Silver Be Alloyed with Bismuth on Nanoscale? An Optical and Structural Approach. The Journal of Physical Chemistry C 2016, 121, 940–949. doi:10.1021/acs.jpcc.6b11260
  • Spatschek, R.; Gobbi, G.; Hüter, C.; Chakrabarty, A.; Aydin, U.; Brinckmann, S.; Neugebauer, J. Scale bridging description of coherent phase equilibria in the presence of surfaces and interfaces. Physical Review B 2016, 94, 134106. doi:10.1103/physrevb.94.134106
  • Maras, E.; Berthier, F.; Legrand, B. Stability diagram of Janus and core-shell configurations in bimetallic nanowires. The Journal of Physical Chemistry C 2016, 120, 22670–22680. doi:10.1021/acs.jpcc.6b06707
Other Beilstein-Institut Open Science Activities