Cite the Following Article
Reduced electron recombination of dye-sensitized solar cells based on TiO2 spheres consisting of ultrathin nanosheets with [001] facet exposed
Hongxia Wang, Meinan Liu, Cheng Yan and John Bell
Beilstein J. Nanotechnol. 2012, 3, 378–387.
https://doi.org/10.3762/bjnano.3.44
How to Cite
Wang, H.; Liu, M.; Yan, C.; Bell, J. Beilstein J. Nanotechnol. 2012, 3, 378–387. doi:10.3762/bjnano.3.44
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Gu, J. H.; Park, D.; Jung, K.-H.; Lee, B. C.; Han, Y. S. Effects of Ti3C2Tx MXene Addition to a Co Complex/Ionic Liquid-Based Electrolyte on the Photovoltaic Performance of Solar Cells. Molecules (Basel, Switzerland) 2024, 29, 1340. doi:10.3390/molecules29061340
- Berger, O. Understanding the fundamentals of TiO2 surfacesPart II. Reactivity and surface chemistry of TiO2 single crystals. Surface Engineering 2022, 38, 846–906. doi:10.1080/02670844.2023.2175505
- Krishnamoorthy, D.; Meeran, M. N.; Prakasam, A.; Thangaraju, D. Titanium dichalcogenide-decorated reduced graphene oxide nanocomposite for high-performance photovoltaic cell fabrication. Journal of Materials Science: Materials in Electronics 2021, 1–13.
- Krishnamoorthy, D.; Nagoor Meeran, M.; Prakasam, A.; Thangaraju, D. Titanium dichalcogenide-decorated reduced graphene oxide nanocomposite for high-performance photovoltaic cell fabrication. Journal of Materials Science: Materials in Electronics 2021, 33, 1280–1292. doi:10.1007/s10854-021-07427-8
- Shamsaldeen, A. A.; Kloo, L.; Yin, Y.; Gibson, C. T.; Adhikari, S. G.; Andersson, G. G. Influence of TiO2 surface defects on the adsorption of N719 dye molecules. Physical chemistry chemical physics : PCCP 2021, 23, 22160–22173. doi:10.1039/d1cp02283k
- Abdellah, I. M.; El-Shafei, A. Synthesis and characterization of novel tetra anchoring A2-D-D-D-A2 architecture sensitizers for efficient dye-sensitized solar cells. Solar Energy 2020, 198, 25–35. doi:10.1016/j.solener.2020.01.040
- Sun, H.; Ruess, R.; Schlettwein, D.; Yoshida, T. Influence of Crystal Facets (102) or (100) on Photoelectrochemical Kinetics of ZnO Nanocrystals in Dye-Sensitized Solar Cells. Journal of The Electrochemical Society 2019, 166, B3290–B3294. doi:10.1149/2.0451909jes
- Jaafar, H.; Ahmad, Z. A.; Ain, M. F. The use of carbon black-TiO2 composite prepared using solid state method as counter electrode and E. conferta as sensitizer for dye-sensitized solar cell (DSSC) applications. Optical Materials 2018, 79, 366–371. doi:10.1016/j.optmat.2018.04.008
- Ballestas-Barrientos, A.; Li, X.; Yick, S.; Masters, A. F.; Maschmeyer, T. Optimised heterojunctions between [100]-oriented rutile TiO2 arrays and {001} faceted anatase nanodomains for enhanced photoelectrochemical activity. Sustainable Energy & Fuels 2018, 2, 1463–1473. doi:10.1039/c8se00022k
- Gao, C.; Peng, Y.; Hu, L.; Mo, L.-E.; Zhang, X.; Hayat, T.; Alsaedi, A.; Dai, S. A comparative study of the density of surface states in solid and hollow TiO2 microspheres. Inorganic Chemistry Frontiers 2018, 5, 2284–2290. doi:10.1039/c8qi00633d
- Jaafar, H.; Ahmad, Z. A.; Ain, M. F. Effect of Nb-doped TiO2 photoanode using solid state method with E. conferta as sensitizer on the performance of dye sensitized solar cell. Optik 2017, 144, 91–101. doi:10.1016/j.ijleo.2017.06.097
- Ahn, Y.; Lee, D. Y.; Shin, C. Y.; Bui, H. T.; Shrestha, N. K.; Giebeler, L.; Noh, Y.-Y.; Han, S.-H. Novel Solid-State Solar Cell Based on Hole-Conducting MOF-Sensitizer Demonstrating Power Conversion Efficiency of 2.1. ACS applied materials & interfaces 2017, 9, 12930–12935. doi:10.1021/acsami.7b03487
- Pavithra, N.; Velayutham, D.; Sorrentino, A.; Anandan, S. Poly(ethylene oxide) polymer matrix coupled with urea as gel electrolyte for dye sensitized solar cell applications. Synthetic Metals 2017, 226, 62–70. doi:10.1016/j.synthmet.2017.01.014
- D’Arienzo, M.; Scotti, R.; Di Credico, B.; Redaelli, M. Synthesis and Characterization of Morphology-Controlled TiO2 Nanocrystals: Opportunities and Challenges for their Application in Photocatalytic Materials. Studies in Surface Science and Catalysis 2017, 177, 477–540. doi:10.1016/b978-0-12-805090-3.00013-9
- Prakash, T.; M, N.; J, A.; Ponnusamy, S.; C, M.; Hayakawa, Y. Synthesis of Monodispersed TiO2 Nanosheets by Wet ChemicalMethod and their Applications in Dye-Sensitized Solar Cells. Research & Reviews: Journal of Material Sciences 2017, 5, 43–48. doi:10.4172/2321-6212.1000169
- Ghaithan, H. M.; Qaid, S. M. H.; Hezam, M.; Labis, J. P.; Alduraibi, M.; Bedja, I.; Aldwayyan, A. S. Laser induced photocurrent and photovoltage transient measurements of dye-sensitized solar cells based on TiO2 nanosheets and TiO2 nanoparticles. Electrochimica Acta 2016, 212, 992–997. doi:10.1016/j.electacta.2016.07.021
- D’Souza, L. P.; Shwetharani, R.; Amoli, V.; Fernando, C. A. N.; Sinha, A. K.; Balakrishna, R. G. Photoexcitation of neodymium doped TiO2 for improved performance in dye-sensitized solar cells. Materials & Design 2016, 104, 346–354. doi:10.1016/j.matdes.2016.05.007
- Spettel, K. E.; Damrauer, N. H. Exploiting Conformational Dynamics of Structurally Tuned Aryl-Substituted Terpyridyl Ruthenium(II) Complexes to Inhibit Charge Recombination in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2016, 120, 10815–10829. doi:10.1021/acs.jpcc.6b03302
- Sharma, S.; Khannam, M.; Dolui, S. K. A quasi solid state dye sensitized solar cell based on gelatin/multiwalled carbon nanotube gel electrolyte and ZnO nanorod photoanode. Journal of Materials Science: Materials in Electronics 2016, 27, 7864–7875. doi:10.1007/s10854-016-4777-x
- Merazga, A.; Al-Subai, F.; Al-Baradi, A. M.; Badawi, A.; Jaber, A.; Alghamdi, A. A. Effect of sol–gel MgO spin-coating on the performance of TiO2-based dye-sensitized solar cells. Materials Science in Semiconductor Processing 2016, 41, 114–120. doi:10.1016/j.mssp.2015.08.026