Cite the Following Article
Conducting composite materials from the biopolymer kappa-carrageenan and carbon nanotubes
Ali Aldalbahi, Jin Chu, Peter Feng and Marc in het Panhuis
Beilstein J. Nanotechnol. 2012, 3, 415–427.
https://doi.org/10.3762/bjnano.3.48
How to Cite
Aldalbahi, A.; Chu, J.; Feng, P.; in het Panhuis, M. Beilstein J. Nanotechnol. 2012, 3, 415–427. doi:10.3762/bjnano.3.48
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Krishnan, L.; Ravi, N.; Kumar Mondal, A.; Akter, F.; Kumar, M.; Ralph, P.; Kuzhiumparambil, U. Seaweed-based polysaccharides – review of extraction, characterization, and bioplastic application. Green Chemistry 2024, 26, 5790–5823. doi:10.1039/d3gc04009g
- Wang, X.; Guo, C.; Guo, H. Progress of Carrageenan‐Based Films and Coatings for Food Packaging Applications. Packaging Technology and Science 2024, 37, 533–550. doi:10.1002/pts.2806
- Martin, A.; Dudkowiak, A.; Łukawski, D. Cost-effective electroconductive sodium lignosulfonate/carbon nanotube composite coating for paper electronics. Diamond and Related Materials 2023, 139, 110372. doi:10.1016/j.diamond.2023.110372
- Moncada, D.; Rico, M.; Montero, B.; Rodríguez-Llamazares, S.; Feijoo-Bandín, S.; Gualillo, O.; Lago, F.; Aragón-Herrera, A.; Salavagione, H.; Pettinelli, N.; Bouza, R.; Farrag, Y. Injectable hybrid hydrogels physically crosslinked based on carrageenan and green graphene for tissue repair. International journal of biological macromolecules 2023, 235, 123777. doi:10.1016/j.ijbiomac.2023.123777
- Singh, R.; Shrivastava, A.; Bajpai, A. Biodegradable polymer nanocomposites for gas-sensing and bio-sensing applications: prospects and challenges. Biodegradable and Biocompatible Polymer Nanocomposites; Elsevier, 2023; pp 485–513. doi:10.1016/b978-0-323-91696-7.00005-2
- Macedo, V. M.; Pereira, N.; Tubio, C. R.; Martins, P.; Lanceros-Mendez, S.; Costa, C. M. 3D-printed carrageenan-based nanocomposites for sustainable resistive sensing devices. Polymer 2022, 262, 125456. doi:10.1016/j.polymer.2022.125456
- Safarpour, F.; Kharaziha, M.; Emadi, R. Inspiring biomimetic system based on red blood cell membrane vesicles for effective curcumin loading and release. International journal of pharmaceutics 2021, 613, 121419. doi:10.1016/j.ijpharm.2021.121419
- Goswami, M. R.; Singh, P.; Chamoli, P.; Bhardwaj, S.; Raina, K. K.; Shukla, R. K. Effect of graphene oxide doping on the room temperature shear and dynamic rheological behaviour of PVDF. Journal of Dispersion Science and Technology 2021, 44, 1237–1247. doi:10.1080/01932691.2021.2013862
- Alshahrani, A.; Alharbi, A.; Alnasser, S.; Almihdar, M.; Alsuhybani, M.; Alotaibi, B. Enhanced heavy metals removal by a novel carbon nanotubes buckypaper membrane containing a mixture of two biopolymers: Chitosan and i-carrageenan. Separation and Purification Technology 2021, 276, 119300. doi:10.1016/j.seppur.2021.119300
- Kurukavak, Ç. K.; Yılmaz, T. Characterization of bionanocomposites. Bionanocomposites in Tissue Engineering and Regenerative Medicine; Elsevier, 2021; pp 45–90. doi:10.1016/b978-0-12-821280-6.00008-8
- Huang, Y.; Kormakov, S.; He, X.; Gao, X.; Xiuting, Z.; Liu, Y.; Sun, J.; Wu, D. Conductive Polymer Composites from Renewable Resources: An Overview of Preparation, Properties, and Applications. Polymers 2019, 11, 187. doi:10.3390/polym11020187
- Bayat, M.; Nasri, S. Modified Kappa‐Carrageenan as a Heterogeneous Green Catalyst for the Synthesis of Nitrogen and Sulfur‐Containing Indenone‐Fused Heterocyclic Compounds. Journal of Heterocyclic Chemistry 2018, 55, 650–659. doi:10.1002/jhet.3083
- Khalil, H. P. S. A.; Saurabh, C. K.; Tye, Y. Y.; Lai, T. K.; Easa, A. M.; Rosamah, E.; Fazita, M. R. N.; Syakir, M. I.; Adnan, A. S.; Fizree, H. M.; Aprilia, N. A. S.; Banerjee, A. Seaweed based sustainable films and composites for food and pharmaceutical applications: A review. Renewable and Sustainable Energy Reviews 2017, 77, 353–362. doi:10.1016/j.rser.2017.04.025
- Rivera, M.; Rahaman, M.; Aldalbahi, A.; Velazquez, R.; Zhou, A. F.; Feng, P. Exploring the Effects of Argon Plasma Treatment on Plasmon Frequency and the Chemiresistive Properties of Polymer-Carbon Nanotube Metacomposite. Materials (Basel, Switzerland) 2017, 10, 986. doi:10.3390/ma10090986
- Subramanian, V.; Varade, D. Thermoelectric Properties of Biopolymer Composites. Biopolymer Composites in Electronics; Elsevier, 2017; pp 155–183. doi:10.1016/b978-0-12-809261-3.00005-x
- Krebsz, M.; Pasinszki, T.; Tung, T. T.; Losic, D. Development of Vapor/Gas Sensors From Biopolymer Composites. Biopolymer Composites in Electronics; Elsevier, 2017; pp 385–403. doi:10.1016/b978-0-12-809261-3.00014-0
- Peng, X.; Chu, J.; Aldalbahi, A.; Rivera, M.; Wang, L.; Duan, S.; Feng, P. A flexible humidity sensor based on KC–MWCNTs composites. Applied Surface Science 2016, 387, 149–154. doi:10.1016/j.apsusc.2016.05.108
- Mobarak, N. N.; Ghani; Abdullah, P.; Ahmad, A. Chemical Interaction, Conductivity and Thermal Properties of Kappa Carrageenan Based Polymer Electrolytes. Advanced Materials Research 2015, 1107, 168–174. doi:10.4028/www.scientific.net/amr.1107.168
- Zhu, D.; Nakamura, H.; Zhu, H.; Xu, C.; Matsuo, M. Microfibers from interpolymer complexation of κ-carrageenan and oligomers of polyaniline for glucose detection. Synthetic Metals 2015, 202, 133–139. doi:10.1016/j.synthmet.2015.01.026
- Mehyar, G. F.; Al-Isamil, K. M.; Al-Ghizzawi, H. M.; Holley, R. A. Stability of Cardamom (Elettaria Cardamomum) Essential Oil in Microcapsules Made of Whey Protein Isolate, Guar Gum, and Carrageenan. Journal of food science 2014, 79, C1939–49. doi:10.1111/1750-3841.12652