Focused electron beam induced deposition: A perspective

Michael Huth, Fabrizio Porrati, Christian Schwalb, Marcel Winhold, Roland Sachser, Maja Dukic, Jonathan Adams and Georg Fantner
Beilstein J. Nanotechnol. 2012, 3, 597–619. https://doi.org/10.3762/bjnano.3.70

Cite the Following Article

Focused electron beam induced deposition: A perspective
Michael Huth, Fabrizio Porrati, Christian Schwalb, Marcel Winhold, Roland Sachser, Maja Dukic, Jonathan Adams and Georg Fantner
Beilstein J. Nanotechnol. 2012, 3, 597–619. https://doi.org/10.3762/bjnano.3.70

How to Cite

Huth, M.; Porrati, F.; Schwalb, C.; Winhold, M.; Sachser, R.; Dukic, M.; Adams, J.; Fantner, G. Beilstein J. Nanotechnol. 2012, 3, 597–619. doi:10.3762/bjnano.3.70

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Askey, J.; Hunt, M. O.; Payne, L.; van den Berg, A.; Pitsios, I.; Hejazi, A.; Langbein, W.; Ladak, S. Direct visualization of domain wall pinning in sub-100 nm 3D magnetic nanowires with cross-sectional curvature. Nanoscale 2024, 16, 17793–17803. doi:10.1039/d4nr02020k
  • Izadi, F.; Luxford, T. F. M.; Sedmidubská, B.; Arthur-Baidoo, E.; Kočišek, J.; Ončák, M.; Denifl, S. Dissociative Electron Attachment Dynamics of a Promising Cancer Drug Indicates Its Radiosensitizing Potential. Angewandte Chemie (International ed. in English) 2024, 63, e202407469. doi:10.1002/anie.202407469
  • Izadi, F.; Luxford, T. F. M.; Sedmidubská, B.; Arthur‐Baidoo, E.; Kočišek, J.; Ončák, M.; Denifl, S. Dissoziative Elektronenanlagerungsdynamik eines vielversprechenden Krebsmedikaments zeigt sein Potential als Radiosensitizer. Angewandte Chemie 2024, 136. doi:10.1002/ange.202407469
  • Valendolf, J.; Piñero, J.; Alba, G.; Lloret, F.; Fernández, D.; Araujo, D. Microscopic evidence of carbide formation at the interface of tungsten-based ohmic contacts on diamond. Applied Surface Science 2024, 667, 160429. doi:10.1016/j.apsusc.2024.160429
  • Butrymowicz-Kubiak, A.; Muzioł, T. M.; Kaczmarek-Kędziera, A.; Jureddy, C. S.; Maćkosz, K.; Utke, I.; Szymańska, I. B. New palladium(II) β-ketoesterates for focused electron beam induced deposition: synthesis, structures, and characterization. Dalton transactions (Cambridge, England : 2003) 2024, 53, 13662–13677. doi:10.1039/d4dt01287a
  • Valendolf, J.; Leinen, D.; Alba, G.; Lloret, F.; Piñero, J.; Suzuki, M.; Araujo, D. FIB in-situ fabrication of pseudo vertical diamond Schottky diode: H-terminated ohmic contact and O-terminated Schottky barrier. Applied Surface Science 2024, 674, 160909. doi:10.1016/j.apsusc.2024.160909
  • Glessi, C.; Polman, F. A.; Hagen, C. W. Water-assisted purification during electron beam-induced deposition of platinum and gold. Beilstein journal of nanotechnology 2024, 15, 884–896. doi:10.3762/bjnano.15.73
  • Yibibulla, T.; Hou, L.; Mead, J. L.; Huang, H.; Fatikow, S.; Wang, S. Frictional behavior of one-dimensional materials: an experimental perspective. Nanoscale advances 2024, 6, 3251–3284. doi:10.1039/d4na00039k
  • Solov'yov, A. V.; Verkhovtsev, A. V.; Mason, N. J.; Amos, R. A.; Bald, I.; Baldacchino, G.; Dromey, B.; Falk, M.; Fedor, J.; Gerhards, L.; Hausmann, M.; Hildenbrand, G.; Hrabovský, M.; Kadlec, S.; Kočišek, J.; Lépine, F.; Ming, S.; Nisbet, A.; Ricketts, K.; Sala, L.; Schlathölter, T.; Wheatley, A. E. H.; Solov'yov, I. A. Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment. Chemical reviews 2024, 124, 8014–8129. doi:10.1021/acs.chemrev.3c00902
  • Hettler, S.; Arenal, R. Synthesis and dynamics of PtSi nanoparticles on a carbon nanofilm by in-situ TEM Joule heating. Carbon Trends 2024, 15, 100348. doi:10.1016/j.cartre.2024.100348
  • Werner, W. S. M.; Simperl, F.; Blödorn, F.; Brunner, J.; Kero, J.; Bellissimo, A.; Ridzel, O. Energy Dissipation of Fast Electrons in Polymethylmethacrylate: Toward a Universal Curve for Electron-Beam Attenuation in Solids between ∼0  eV and Relativistic Energies. Physical review letters 2024, 132, 186203. doi:10.1103/physrevlett.132.186203
  • Almutlaq, J.; Kelley, K. P.; Choi, H.; Li, L.; Lawrie, B.; Dyck, O.; Englund, D.; Jesse, S. Closed-loop electron-beam-induced spectroscopy and nanofabrication around individual quantum emitters. Nanophotonics 2024, 13, 2251–2258. doi:10.1515/nanoph-2023-0877
  • Mészáros, D.; Matejčík, Š.; Papp, P. Formation of negative ions from cobalt tricarbonyl nitrosyl Co(CO)3NO clusters. Physical chemistry chemical physics : PCCP 2024, 26, 7522–7533. doi:10.1039/d3cp05601e
  • Žaper, L.; Rickhaus, P.; Wyss, M.; Gross, B.; Wagner, K.; Poggio, M.; Braakman, F. Scanning Nitrogen-Vacancy Magnetometry of Focused-Electron-Beam-Deposited Cobalt Nanomagnets. ACS applied nano materials 2024, 7, 3854–3860. doi:10.1021/acsanm.3c05470
  • Pandey, M.; Antony, B. Calculations of electron scattering cross sections from tungsten precursors used in FEBID. Journal of Electron Spectroscopy and Related Phenomena 2024, 271, 147430. doi:10.1016/j.elspec.2024.147430
  • Piasecki, T.; Kwoka, K.; Gacka, E.; Kunicki, P.; Gotszalk, T. Electrical, thermal and noise properties of platinum-carbon free-standing nanowires designed as nanoscale resistive thermal devices. Nanotechnology 2023, 35, 115502. doi:10.1088/1361-6528/ad13c0
  • Bilgilisoy, E.; Kamali, A.; Gentner, T. X.; Ballmann, G.; Harder, S.; Steinrück, H.-P.; Marbach, H.; Ingólfsson, O. A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2. Beilstein journal of nanotechnology 2023, 14, 1178–1199. doi:10.3762/bjnano.14.98
  • Reisecker, V.; Kuhness, D.; Haberfehlner, G.; Brugger‐Hatzl, M.; Winkler, R.; Weitzer, A.; Loibner, D.; Dienstleder, M.; Kothleitner, G.; Plank, H. Spectral Tuning of Plasmonic Activity in 3D Nanostructures via High‐Precision Nano‐Printing. Advanced Functional Materials 2023, 34. doi:10.1002/adfm.202310110
  • Chaudhary, A.; Eckhert, P.; Fairbrother, D. H.; McElwee-White, L. Chemistry for the Focused Electron and Ion Beam-Induced Deposition of Metal Nanostructures. In 2023 IEEE Nanotechnology Materials and Devices Conference (NMDC), IEEE, 2023; pp 501–504. doi:10.1109/nmdc57951.2023.10344187
  • Kamali, A.; Carden, W. G.; Johnson, J. V.; McElwee-White, L.; Ingólfsson, O. Dissociative electron attachment and dissociative ionization of CF3AuCNC(CH3)3, a potential FEBID precursor for gold deposition. The European Physical Journal D 2023, 77. doi:10.1140/epjd/s10053-023-00721-6

Patents

  • HILD KERSTIN; GRUNER TORALF; GOLDE DANIEL; STIEPAN HANS MICHAEL; SHKLOVER VITALIY. MIRROR, IN PARTICULAR FOR A MICROLITHOGRAPHIC PROJECTION EXPOSURE APPARATUS. WO 2021259633 A1, Dec 30, 2021.
  • HORN JAN; AWAD MOHAMMAD; HILD KERSTIN. MIRROR, IN PARTICULAR FOR MICROLITHOGRAPHY. WO 2021239355 A1, Dec 2, 2021.
  • LAM DAVID K; MONAHAN KEVIN M; SMAYLING MICHAEL C; PRESCOP THEODORE A. Precision substrate material multi-processing using miniature-column charged particle beam arrays. US 11037756 B1, June 15, 2021.
  • LAM DAVID K; MONAHAN KEVIN M; SMAYLING MICHAEL C; PRESCOP THEODORE A. Precision substrate material multi-processing using miniature-column charged particle beam arrays. US 10734192 B1, Aug 4, 2020.
  • LAM DAVID K; MONAHAN KEVIN M; SMAYLING MICHAEL C; PRESCOP THEODORE A. Precision substrate material multi-processing using miniature-column charged particle beam arrays. US 10658153 B1, May 19, 2020.
  • SHIH HSUN-CHUAN; CHIN SHENG-CHI; CHU YUAN-CHIH; LI YUEH-HSUN. Focused radiation beam induced deposition. US 10061193 B2, Aug 28, 2018.
  • SHIH HSUN-CHUAN; CHIN SHENG-CHI; CHU YUAN-CHIH; LI YUEH-HSUN. Focused radiation beam induced deposition. US 9915866 B2, March 13, 2018.
  • LAM DAVID K; MONAHAN KEVIN M; SMAYLING MICHAEL C; PRESCOP THEODORE A. Precision substrate material multi-processing using miniature-column charged particle beam arrays. US 9881817 B1, Jan 30, 2018.
Other Beilstein-Institut Open Science Activities