Zeolites as nanoporous, gas-sensitive materials for in situ monitoring of DeNOx-SCR

Thomas Simons and Ulrich Simon
Beilstein J. Nanotechnol. 2012, 3, 667–673. https://doi.org/10.3762/bjnano.3.76

Cite the Following Article

Zeolites as nanoporous, gas-sensitive materials for in situ monitoring of DeNOx-SCR
Thomas Simons and Ulrich Simon
Beilstein J. Nanotechnol. 2012, 3, 667–673. https://doi.org/10.3762/bjnano.3.76

How to Cite

Simons, T.; Simon, U. Beilstein J. Nanotechnol. 2012, 3, 667–673. doi:10.3762/bjnano.3.76

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Wöhrl, T.; Kita, J.; Moos, R.; Hagen, G. Capacitive, Highly Selective Zeolite-Based Ammonia Sensor for Flue Gas Applications. Chemosensors 2023, 11, 413. doi:10.3390/chemosensors11070413
  • Naik, K.; Kutte, V.; Lakhane, M.; Bogle, K.; Mahabole, M. CNF/Cu-ZSM-5 green nanocomposite: excellent flexible ammonia sensor. Journal of Porous Materials 2023, 31, 97–113. doi:10.1007/s10934-023-01484-6
  • Fuśnik, Ł.; Szafraniak, B.; Paleczek, A.; Grochala, D.; Rydosz, A. A Review of Gas Measurement Set-Ups. Sensors (Basel, Switzerland) 2022, 22, 2557. doi:10.3390/s22072557
  • Mbugua, J. K.; Mwaniki, J. M.; Nduta, D. M.; Mwaura, F. B. Upgrading biogas using Eburru zeolitic rocks and other adsorbent materials to remove carbon dioxide and hydrogen sulphide. Tanzania Journal of Science 2021, 47, 421–431. doi:10.4314/tjs.v47i2.2
  • Lei, H.; Rizzotto, V.; Guo, A.; Ye, D.; Simon, U.; Chen, P. Recent Understanding of Low-Temperature Copper Dynamics in Cu-Chabazite NH3-SCR Catalysts. Catalysts 2021, 11, 52. doi:10.3390/catal11010052
  • Ma, W.; Wang, K.; Pan, S.; Wang, H. Iron-Exchanged Zeolite Micromotors for Enhanced Degradation of Organic Pollutants. Langmuir : the ACS journal of surfaces and colloids 2019, 36, 6924–6929. doi:10.1021/acs.langmuir.9b02137
  • Rizzotto, V.; Chen, P.; Simon, U. Mobility of NH3-Solvated CuII Ions in Cu-SSZ-13 and Cu-ZSM-5 NH3-SCR Catalysts: A Comparative Impedance Spectroscopy Study. Catalysts 2018, 8, 162. doi:10.3390/catal8040162
  • Moos, R.; Dietrich, M. Beladungsregelung eines NH 3 -SCR-Katalysator-Systems auf minimale NO x -Emissionen mittels Hochfrequenzsensorik. Automobil-Sensorik 2; Springer Berlin Heidelberg, 2018; pp 225–244. doi:10.1007/978-3-662-56310-6_10
  • Li, F.-a.; Jin, H.; Wang, J.; Zou, J.; Jian, J. Selective Sensing of Gas Mixture via a Temperature Modulation Approach: New Strategy for Potentiometric Gas Sensor Obtaining Satisfactory Discriminating Features. Sensors (Basel, Switzerland) 2017, 17, 573. doi:10.3390/s17030573
  • Chen, P.; Simon, U. In Situ Spectroscopic Studies of Proton Transport in Zeolite Catalysts for NH3-SCR. Catalysts 2016, 6, 204. doi:10.3390/catal6120204
  • Chen, P.; Simböck, J.; Schönebaum, S.; Rauch, D.; Simons, T.; Palkovits, R.; Moos, R.; Simon, U. Monitoring NH3 storage and conversion in Cu-ZSM-5 and Cu SAPO 34 catalysts for NH3-SCR by simultaneous impedance and DRIFT spectroscopy. Sensors and Actuators B: Chemical 2016, 236, 1075–1082. doi:10.1016/j.snb.2016.05.164
  • Chen, P.; Moos, R.; Simon, U. Metal Loading Affects the Proton Transport Properties and the Reaction Monitoring Performance of Fe-ZSM-5 and Cu-ZSM-5 in NH3-SCR. The Journal of Physical Chemistry C 2016, 120, 25361–25370. doi:10.1021/acs.jpcc.6b07353
  • Moos, R.; Rauch, D.; Votsmeier, M.; Kubinski, D. J. Review on Radio Frequency Based Monitoring of SCR and Three Way Catalysts. Topics in Catalysis 2016, 59, 961–969. doi:10.1007/s11244-016-0575-1
  • Simons, T.; Chen, P.; Rauch, D.; Moos, R.; Simon, U. Sensing catalytic conversion: Simultaneous DRIFT and impedance spectroscopy for in situ monitoring of NH3–SCR on zeolites. Sensors and Actuators B: Chemical 2016, 224, 492–499. doi:10.1016/j.snb.2015.10.069
  • Bubenchikov, M. A.; Bubenchikov, A. M.; Usenko, O. V.; Poteryaeva, V. A.; Jambaa, S. Separation of Gases Using Ultra-Thin Porous Layers of Monodisperse Nanoparticles. EPJ Web of Conferences 2016, 110, 01014. doi:10.1051/epjconf/201611001014
  • Tira, H. S.; Padang, Y. A. Removal of CO2 and H2S from raw biogas using activated natural zeolite. In AIP Conference Proceedings, Author(s), 2016; pp 030006 ff. doi:10.1063/1.4965740
  • Moos, R. Mikrowellengestützte Systeme zur Zustandserkennung von Abgaskatalysatoren und Abgasfiltern im Überblick. Automobil-Sensorik; Springer Berlin Heidelberg, 2016; pp 115–132. doi:10.1007/978-3-662-48944-4_6
  • Chen, P.; Schönebaum, S.; Simons, T.; Rauch, D.; Dietrich, M.; Moos, R.; Simon, U. Correlating the Integral Sensing Properties of Zeolites with Molecular Processes by Combining Broadband Impedance and DRIFT Spectroscopy—A New Approach for Bridging the Scales. Sensors (Basel, Switzerland) 2015, 15, 28915–28941. doi:10.3390/s151128915
  • Simons, T.; Villalba, J. F. B.; Jiménez-Jiménez, J.; Rodríguez-Castellón, E.; Simon, U. Zirconium phosphate-based porous heterostructures: A new class of materials for ammonia sensing. Sensors and Actuators B: Chemical 2015, 217, 175–180. doi:10.1016/j.snb.2014.09.030
  • Chen, P.; Schönebaum, S.; Simons, T.; Rauch, D.; Moos, R.; Simon, U. In situ monitoring of DeNOx-SCR on zeolite catalysts by means of simultaneous impedance and DRIFT spectroscopy. Procedia Engineering 2015, 120, 257–260. doi:10.1016/j.proeng.2015.08.600
Other Beilstein-Institut Open Science Activities