Paper modified with ZnO nanorods – antimicrobial studies

Mayuree Jaisai, Sunandan Baruah and Joydeep Dutta
Beilstein J. Nanotechnol. 2012, 3, 684–691. https://doi.org/10.3762/bjnano.3.78

Cite the Following Article

Paper modified with ZnO nanorods – antimicrobial studies
Mayuree Jaisai, Sunandan Baruah and Joydeep Dutta
Beilstein J. Nanotechnol. 2012, 3, 684–691. https://doi.org/10.3762/bjnano.3.78

How to Cite

Jaisai, M.; Baruah, S.; Dutta, J. Beilstein J. Nanotechnol. 2012, 3, 684–691. doi:10.3762/bjnano.3.78

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Yu, D.; Ye, F.; Dobretsov, S.; Dutta, J. Antifouling activity of PEGylated chitosan coatings: Impacts of the side chain length and encapsulated ZnO/Ag nanoparticles. International journal of biological macromolecules 2024, 281, 136316. doi:10.1016/j.ijbiomac.2024.136316
  • Nguyen, D. T. A.; Wang, L.; Imae, T.; Su, C.-J.; Jeng, U.-S.; Rojas, O. J. Nanoarchitectonics of Nanocellulose Filament Electrodes by Femtosecond Pulse Laser Deposition of ZnO and In Situ Conjugation of Conductive Polymers. ACS applied materials & interfaces 2024, 16, 22532–22546. doi:10.1021/acsami.4c02780
  • Bora, T.; Mohammed, W. S. Light Scattering by One-Dimensional ZnO Nanorods and Their Applications in Optical Sensing. Advanced Structured Materials; Springer Nature Singapore, 2024; pp 117–142. doi:10.1007/978-981-99-7848-9_6
  • Arakelova, E. R.; Khachatryan, A. M.; Mirzoian, A. A.; Grigoryan, S. L.; Muradyan, R. E.; Stepanyan, H. R.; Grigoryan, S. G.; Yeranosyan, M. A.; Martiryan, A. I.; Zatikyan, A. L. Formation of zinc oxide composites of doxycycline with high antibacterial activity based on DC-magnetron deposition of ZnO nanoscale particles on the drug surface. Applied Physics A 2024, 130. doi:10.1007/s00339-024-07296-y
  • Shen, Y.; Xu, L.; Liu, Y.; Lu, Y.; Xu, H.; Zhao, R.; Bai, S.; Xin, Y.; Hou, J.; Liu, X.; Liu, F. Influence of AC-DC-AC Cycling with Hydrostatic Pressure on Accelerated Protective Performance Test of Glass Flake Epoxy Coating. Coatings 2023, 13, 1843. doi:10.3390/coatings13111843
  • Vijayaram, S.; Tsigkou, K.; Zuorro, A.; Sun, Y.; Rabetafika, H.; Razafindralambo, H. Inorganic nanoparticles for use in aquaculture. Reviews in Aquaculture 2023, 15, 1600–1617. doi:10.1111/raq.12803
  • Kirthika, S.; Goel, G.; Matthews, A.; Goel, S. Review of the untapped potentials of antimicrobial materials in the construction sector. Progress in Materials Science 2023, 133, 101065. doi:10.1016/j.pmatsci.2022.101065
  • Ech-Chergui, A. N.; Kadari, A. S.; Khan, M. M.; Popad, A.; Khane, Y.; Guezzoul, M.; Leostean, C.; Silipas, D.; Barbu-Tudoran, L.; Abdelhalim, Z.; Bennabi, F.; Driss-Khodja, K.; Amrani, B. Spray pyrolysis-assisted fabrication of Eu-doped ZnO thin films for antibacterial activities under visible light irradiation. Chemical Papers 2022, 77, 1047–1058. doi:10.1007/s11696-022-02543-z
  • Cui, Y.; Liu, H.; Tian, Y.; Fan, Y.; Li, S.; Wang, G.; Wang, Y.; Peng, C.; Wu, D. Dual-functional composite scaffolds for inhibiting infection and promoting bone regeneration. Materials today. Bio 2022, 16, 100409. doi:10.1016/j.mtbio.2022.100409
  • Puangsin, B.; Chitbanyong, K.; Yimlamai, P.; Khantayanuwong, S.; Pisutpiched, S.; Isogai, A. Silver-nanoparticle-containing handsheets for antimicrobial applications. Cellulose 2022, 29, 2005–2016. doi:10.1007/s10570-021-04403-7
  • Tahir, M. B.; Sohaib, M.; Sagir, M.; Rafique, M. Role of Nanotechnology in Photocatalysis. Encyclopedia of Smart Materials; Elsevier, 2022; pp 578–589. doi:10.1016/b978-0-12-815732-9.00006-1
  • Hameed, M.; Rasul, A.; Latif, S.; Rasool, M.; Abbas, G.; Siddique, M. I.; Waqas, M. K.; Khan, I. U.; Yousaf, A. M.; Shah, P. A. Fabrication of moxifloxacin HCl-loaded biodegradable chitosan nanoparticles for potential antibacterial and accelerated cutaneous wound healing efficacy. Journal of microencapsulation 2021, 39, 37–48. doi:10.1080/02652048.2021.2019332
  • Reena; Kumar, A.; Srivastava, V.; Mahto, V.; Choubey, A. K. Polyvinylpyrrolidone-resorcinol-formaldehyde hydrogel system reinforced with bio-synthesized zinc-oxide for water shut-off in heterogeneous reservoir: An experimental investigation. Oil & Gas Science and Technology – Revue d'IFP Energies nouvelles 2021, 76, 67. doi:10.2516/ogst/2021043
  • Ragupathi, H.; Choe, Y.; Arockiaraj, M. A. Preferential killing of bacterial cells by surface-modified organosilane-treated ZnO quantum dots synthesized through a co-precipitation method. New Journal of Chemistry 2021, 45, 12986–12995. doi:10.1039/d1nj01608c
  • Gün Gök, Z.; Demiral, A.; Bozkaya, O.; Yiğitoğlu, M. In situ synthesis of silver nanoparticles on modified poly(ethylene terephthalate) fibers by grafting for obtaining versatile antimicrobial materials. Polymer Bulletin 2020, 78, 7241–7260. doi:10.1007/s00289-020-03486-9
  • Gök, Z. G.; Demiral, A.; Bozkaya, O.; Yiğitoğlu, M. In situ synthesis of silver nanoparticles on modified poly(ethylene terephthalate) fibers by grafting for obtaining versatile antimicrobial materials. Polymer Bulletin 2020, 78, 1–20.
  • Fadl, A.; Abdou, M.; Hamza, M. A.; Sadeek, S. Corrosion-inhibiting, self-healing, mechanical-resistant, chemically and UV stable PDMAS/TiO2 epoxy hybrid nanocomposite coating for steel petroleum tanker trucks. Progress in Organic Coatings 2020, 146, 105715. doi:10.1016/j.porgcoat.2020.105715
  • Tahir, M.; Sohaib, M.; Sagir, M.; Rafique, M.
  • Wang, X.; Yuguang, S.; Jian, J.; Yuan, Z.; Zeng, J.; Zhang, L.; Wang, T.; Zhou, H. Ag@AgCl nanoparticles in-situ deposited cellulose acetate/silk fibroin composite film for photocatalytic and antibacterial applications. Cellulose 2020, 27, 7721–7737. doi:10.1007/s10570-020-03321-4
  • Wang, Y.; Liu, S.; Wang, J.; Tang, F. Polymer network strengthened filter paper for durable water disinfection. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020, 591, 124548. doi:10.1016/j.colsurfa.2020.124548

Patents

  • ZHANG YUGEN; YI GUANGSHUN. Cell rupture-based antimicrobial surfaces coated with metal oxide nano-arrays. US 11154054 B2, Oct 26, 2021.
  • ZHANG YUGEN; YI GUANGSHUN. ANTI-BACTERIAL PATTERNED SURFACES AND METHODS OF MAKING THE SAME. EP 3413710 A4, Jan 22, 2020.
  • チャン ユーゲン; イ グアンシュン. 金属酸化物ナノアレイでコーティングされた、細胞破裂に基づく抗微生物表面. JP 2019534339 A, Nov 28, 2019.
  • ZHANG YUGEN; YI GUANGSHUN. CELL RUPTURE-BASED ANTIMICROBIAL SURFACES COATED WITH METAL OXIDE NANO-ARRAYS. EP 3515193 A4, July 31, 2019.
  • ZHANG YUGEN; YI GUANGSHUN. CELL RUPTURE-BASED ANTIMICROBIAL SURFACES COATED WITH METAL OXIDE NANO-ARRAYS. CN 109790403 A, May 21, 2019.
  • ZHANG YUGEN; YI GUANGSHUN. CELL RUPTURE-BASED ANTIMICROBIAL SURFACES COATED WITH METAL OXIDE NANO-ARRAYS. WO 2018056904 A1, March 29, 2018.
  • ZHANG YUGEN; YI GUANGSHUN. ANTI-BACTERIAL PATTERNED SURFACES AND METHODS OF MAKING THE SAME. WO 2017138890 A1, Aug 17, 2017.
Other Beilstein-Institut Open Science Activities