Influence of the diameter of single-walled carbon nanotube bundles on the optoelectronic performance of dry-deposited thin films

Kimmo Mustonen, Toma Susi, Antti Kaskela, Patrik Laiho, Ying Tian, Albert G. Nasibulin and Esko I. Kauppinen
Beilstein J. Nanotechnol. 2012, 3, 692–702. https://doi.org/10.3762/bjnano.3.79

Cite the Following Article

Influence of the diameter of single-walled carbon nanotube bundles on the optoelectronic performance of dry-deposited thin films
Kimmo Mustonen, Toma Susi, Antti Kaskela, Patrik Laiho, Ying Tian, Albert G. Nasibulin and Esko I. Kauppinen
Beilstein J. Nanotechnol. 2012, 3, 692–702. https://doi.org/10.3762/bjnano.3.79

How to Cite

Mustonen, K.; Susi, T.; Kaskela, A.; Laiho, P.; Tian, Y.; Nasibulin, A. G.; Kauppinen, E. I. Beilstein J. Nanotechnol. 2012, 3, 692–702. doi:10.3762/bjnano.3.79

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Funabe, M.; Satoh, D.; Ando, R.; Daiguji, H.; Matsui, J.; Ishizaki, M.; Kurihara, M. A solvent-compatible filter-transfer method of semi-transparent carbon-nanotube electrodes stacked with silver nanowires. Science and technology of advanced materials 2022, 23, 783–795. doi:10.1080/14686996.2022.2144092
  • Pyrlin, S.; Lenzi, V.; Silva, A.; Ramos, M.; Marques, L. Adhesion of Bis-Salphen-Based Coordination Polymers to Graphene: Insights from Free Energy Perturbation Study. Polymers 2022, 14, 4525. doi:10.3390/polym14214525
  • Zhang, Q.; Nam, J.-S.; Han, J.; Datta, S.; Wei, N.; Ding, E.-X.; Hussain, A.; Ahmad, S.; Skakalova, V.; Khan, A. T.; Liao, Y. P.; Tavakkoli, M.; Peng, B.; Mustonen, K.; Kim, D.; Chung, I.; Maruyama, S.; Jiang, H.; Jeon, I.; Kauppinen, E. I. Large-Diameter Carbon Nanotube Transparent Conductor Overcoming Performance–Yield Tradeoff. Advanced Functional Materials 2021, 32, 2103397. doi:10.1002/adfm.202103397
  • Mosley, C. D. W. High-Field Terahertz Time-Domain Spectroscopy of Single-Walled Carbon Nanotubes and CuO. Springer Theses; Springer International Publishing, 2021; pp 89–110. doi:10.1007/978-3-030-66902-7_5
  • Drozdov, G.; Ostanin, I.; Xu, H.; Wang, Y.; Dumitricǎ, T.; Grebenko, A.; Tsapenko, A. P.; Gladush, Y.; Ermolaev, G. A.; Volkov, V. S.; Eibl, S.; Rüde, U.; Nasibulin, A. G. Densification of single-walled carbon nanotube films: Mesoscopic distinct element method simulations and experimental validation. Journal of Applied Physics 2020, 128, 184701. doi:10.1063/5.0025505
  • Xie, R.; Sugime, H.; Noda, S. Dispersing and doping carbon nanotubes by poly(p-styrene-sulfonic acid) for high-performance and stable transparent conductive films. Carbon 2020, 164, 150–156. doi:10.1016/j.carbon.2020.03.063
  • Satco, D. A.; Kopylova, D. S.; Fedorov, F. S.; Kallio, T.; Saito, R.; Nasibulin, A. G. Intersubband Plasmon Observation in Electrochemically Gated Carbon Nanotube Films. ACS Applied Electronic Materials 2019, 2, 195–203. doi:10.1021/acsaelm.9b00695
  • Chen, D. R.; Chitranshi, M.; Schulz, M. J.; Shanov, V. A Review of Three Major Factors Controlling Carbon Nanotubes Synthesis from the Floating Catalyst Chemical Vapor Deposition. Nano LIFE 2019, 09, 1930002. doi:10.1142/s1793984419300024
  • Liao, Y.; Mustonen, K.; Tulić, S.; Skakalova, V.; Khan, S. A.; Laiho, P.; Zhang, Q.; Li, C.; Monazam, M. R. A.; Kotakoski, J.; Lipsanen, H.; Kauppinen, E. I. Enhanced Tunneling in a Hybrid of Single-Walled Carbon Nanotubes and Graphene. ACS nano 2019, 13, 11522–11529. doi:10.1021/acsnano.9b05049
  • Burdanova, M. G.; Tsapenko, A. P.; Satco, D. A.; Kashtiban, R. J.; Mosley, C. D. W.; Monti, M.; Staniforth, M.; Sloan, J.; Gladush, Y.; Nasibulin, A. G.; Lloyd-Hughes, J. Giant Negative Terahertz Photoconductivity in Controllably Doped Carbon Nanotube Networks. ACS Photonics 2019, 6, 1058–1066. doi:10.1021/acsphotonics.9b00138
  • Kuwahara, Y.; Hirai, T.; Saito, T. Effects of Tube Diameter and Length on Transparent Conductivity of Single-Walled Carbon Nanotube Network Films. Journal of Nanomaterials 2018, 2018, 1–9. doi:10.1155/2018/5393290
  • Zhang, Q.; Wei, N.; Laiho, P.; Kauppinen, E. I. Recent Developments in Single-Walled Carbon Nanotube Thin Films Fabricated by Dry Floating Catalyst Chemical Vapor Deposition. Topics in current chemistry (Cham) 2017, 375, 90. doi:10.1007/s41061-017-0178-8
  • Szirmai, P.; Márkus, B. G.; Dóra, B.; Fábián, G.; Koltai, J.; Zólyomi, V.; Kürti, J.; Náfrádi, B.; Forró, L.; Pichler, T.; Simon, F. Doped carbon nanotubes as a model system of biased graphene. Physical Review B 2017, 96, 075133. doi:10.1103/physrevb.96.075133
  • Gilshteyn, E. P.; Kallio, T.; Kanninen, P.; Fedorovskaya, E. O.; Anisimov, A. S.; Nasibulin, A. G. Stretchable and transparent supercapacitors based on aerosol synthesized single-walled carbon nanotube films. RSC Advances 2016, 6, 93915–93921. doi:10.1039/c6ra20319a
  • Mustonen, K.; Laiho, P.; Kaskela, A.; Susi, T.; Nasibulin, A. G.; Kauppinen, E. I. Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors. Applied Physics Letters 2015, 107, 143113. doi:10.1063/1.4932942
  • Derbal-Habak, H.; Bergeret, C.; Cousseau, J.; Nunzi, J.-M. Increase of open circuit voltage of polymer bulk heterojunction solar cell by functionalized single walled carbon nanotubes. Advanced Device Materials 2015, 1, 59–64. doi:10.1179/2055031615y.0000000001
  • Anoshkin, I. V.; Nasibulin, A. G.; Tian, Y.; Liu, B.; Jiang, H.; Kauppinen, E. I. Hybrid carbon source for single-walled carbon nanotube synthesis by aerosol CVD method. Carbon 2014, 78, 130–136. doi:10.1016/j.carbon.2014.06.057
  • Allen, R.; Fuller, G. G.; Bao, Z. Aligned SWNT films from low-yield stress gels and their transparent electrode performance. ACS applied materials & interfaces 2013, 5, 7244–7252. doi:10.1021/am401592v
Other Beilstein-Institut Open Science Activities