Large-scale analysis of high-speed atomic force microscopy data sets using adaptive image processing

Blake W. Erickson, Séverine Coquoz, Jonathan D. Adams, Daniel J. Burns and Georg E. Fantner
Beilstein J. Nanotechnol. 2012, 3, 747–758. https://doi.org/10.3762/bjnano.3.84

Supporting Information

Supporting Information File 1: Further details on imaging and image processing
Format: PDF Size: 2.1 MB Download
Supporting Information File 2: Image sequence movie
The movie shows the entire image sequence of the fully corrected data, with vertical median correction, from Figure 7. Each frame is approximately three seconds apart. The vertical scale of all images is in nanometers.
Format: MOV Size: 711.8 KB Download
Supporting Information File 3: User Manual
The user manual presented here contains a brief description of how to use the program and the parameters available for each channel.
Format: PDF Size: 1.0 MB Download

Cite the Following Article

Large-scale analysis of high-speed atomic force microscopy data sets using adaptive image processing
Blake W. Erickson, Séverine Coquoz, Jonathan D. Adams, Daniel J. Burns and Georg E. Fantner
Beilstein J. Nanotechnol. 2012, 3, 747–758. https://doi.org/10.3762/bjnano.3.84

How to Cite

Erickson, B. W.; Coquoz, S.; Adams, J. D.; Burns, D. J.; Fantner, G. E. Beilstein J. Nanotechnol. 2012, 3, 747–758. doi:10.3762/bjnano.3.84

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Pellequer, J.-L. Perspectives Toward an Integrative Structural Biology Pipeline With Atomic Force Microscopy Topographic Images. Journal of molecular recognition : JMR 2024, 37, e3102. doi:10.1002/jmr.3102
  • Nečas, D. Self-consistent autocorrelation for finite-area bias correction in roughness measurement. Engineering Research Express 2024, 6, 25560–025560. doi:10.1088/2631-8695/ad5302
  • Heath, G. R.; Micklethwaite, E.; Storer, T. M. NanoLocz: Image Analysis Platform for AFM, High-Speed AFM, and Localization AFM. Small methods 2024, 8, e2301766. doi:10.1002/smtd.202301766
  • Heath, G. R.; Micklethwaite, E.; Storer, T. NanoLocz: Image analysis platform for AFM, high-speed AFM and localization AFM. Cold Spring Harbor Laboratory 2023. doi:10.1101/2023.11.23.568405
  • Groenendijk, R.; Dorst, L.; Gevers, T. Geometric Back-Propagation in Morphological Neural Networks. IEEE transactions on pattern analysis and machine intelligence 2023, 45, 14045–8. doi:10.1109/tpami.2023.3290615
  • Ciurans-Oset, M.; Mundó-Tijeras, I.; Mouzon, J.; Akhtar, F. Use of AFM topography images to determine microindentation hardness of cast tungsten carbide powders. International Journal of Refractory Metals and Hard Materials 2022, 107, 105878. doi:10.1016/j.ijrmhm.2022.105878
  • Wu, Y.; Fang, Y.; Fan, Z.; Liu, C. Accurate Morphology Characterization Using Atomic Force Microscopy via Vertical Drift Correction and Illusory Slope Elimination. Microscopy and Microanalysis 2021, 27, 1366–1374. doi:10.1017/s1431927621012599
  • Wu, Y.; Yongchun, F.; Fan, Z.; Cunhuan, L. Accurate Morphology Characterization Using Atomic Force Microscopy via Vertical Drift Correction and Illusory Slope Elimination. Microscopy and Microanalysis 2021, 1–9.
  • Azuri, I.; Rosenhek-Goldian, I.; Regev-Rudzki, N.; Fantner, G. E.; Cohen, S. R. The role of convolutional neural networks in scanning probe microscopy: a review. Beilstein journal of nanotechnology 2021, 12, 878–901. doi:10.3762/bjnano.12.66
  • Wu, Y.; Fang, Y.; Fan, Z.; Wang, C.; Liu, C. An automated vertical drift correction algorithm for AFM images based on morphology prediction. Micron (Oxford, England : 1993) 2020, 140, 102950. doi:10.1016/j.micron.2020.102950
  • Xianguang, F.; Xiao-dong, W.; Yu-xin, C.; Xin, W. Image processing for three defects of topography images by SPM. Chemometrics and Intelligent Laboratory Systems 2019, 185, 12–17. doi:10.1016/j.chemolab.2018.12.013
  • Eskandarian, H. A.; Nievergelt, A. P.; Fantner, G. E. Time-Resolved Imaging of Bacterial Surfaces Using Atomic Force Microscopy. Methods in molecular biology (Clifton, N.J.) 2018, 1814, 385–402. doi:10.1007/978-1-4939-8591-3_23
  • Nievergelt, A. P.; Banterle, N.; Andany, S. H.; Gönczy, P.; Fantner, G. E. High-speed photothermal off-resonance atomic force microscopy reveals assembly routes of centriolar scaffold protein SAS-6. Nature nanotechnology 2018, 13, 696–701. doi:10.1038/s41565-018-0149-4
  • Nievergelt, A. P.; Andany, S. H.; Adams, J. D.; Hannebelle, M. T. M.; Fantner, G. E. AIM - Components for high-speed atomic force microscopy optimized for low phase-lag. In 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, 2017; pp 731–736. doi:10.1109/aim.2017.8014104
  • Eskandarian, H. A.; Odermatt, P. D.; Ven, J. X. Y.; Hannebelle, M. T. M.; Nievergelt, A. P.; Dhar, N.; McKinney, J. D.; Fantner, G. E. Division site selection linked to inherited cell surface wave troughs in mycobacteria. Nature microbiology 2017, 2, 17094. doi:10.1038/nmicrobiol.2017.94
  • Schlecker, B.; Dukic, M.; Erickson, B.; Ortmanns, M.; Fantner, G. E.; Anders, J. Single-Cycle-PLL Detection for Real-Time FM-AFM Applications. IEEE transactions on biomedical circuits and systems 2014, 8, 206–215. doi:10.1109/tbcas.2014.2307696
  • Stirling, J.; Woolley, R.; Moriarty, P. Scanning probe image wizard: A toolbox for automated scanning probe microscopy data analysis. The Review of scientific instruments 2013, 84, 113701. doi:10.1063/1.4827076
  • Chen, S.-w. W.; Odorico, M.; Meillan, M.; Vellutini, L.; Teulon, J.-M.; Parot, P.; Bennetau, B.; Pellequer, J.-L. Nanoscale structural features determined by AFM for single virus particles. Nanoscale 2013, 5, 10877–10886. doi:10.1039/c3nr02706f
Other Beilstein-Institut Open Science Activities