Effect of spherical Au nanoparticles on nanofriction and wear reduction in dry and liquid environments

Dave Maharaj and Bharat Bhushan
Beilstein J. Nanotechnol. 2012, 3, 759–772. https://doi.org/10.3762/bjnano.3.85

Cite the Following Article

Effect of spherical Au nanoparticles on nanofriction and wear reduction in dry and liquid environments
Dave Maharaj and Bharat Bhushan
Beilstein J. Nanotechnol. 2012, 3, 759–772. https://doi.org/10.3762/bjnano.3.85

How to Cite

Maharaj, D.; Bhushan, B. Beilstein J. Nanotechnol. 2012, 3, 759–772. doi:10.3762/bjnano.3.85

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Wood, J.; Palms, D.; Dabare, R.; Vasilev, K.; Bright, R. Exploring the Challenges of Characterising Surface Topography of Polymer-Nanoparticle Composites. Nanomaterials (Basel, Switzerland) 2024, 14, 1275. doi:10.3390/nano14151275
  • Gupta, D.; Kumar, C.; Mathur, A.; Mishra, S.; Ahmad, A.; Deka, N.; Kalita, P.; Singh, M. doi:10.1002/9781119865698.ch4
  • Tlili, H.; Elaoud, A.; Asses, N.; Horchani-Naifer, K.; Ferhi, M.; Goya, G. F.; Fuentes-García, J. A. Reduction of Oxidizable Pollutants in Waste Water from the Wadi El Bey River Basin Using Magnetic Nanoparticles as Removal Agents. Magnetochemistry 2023, 9, 157. doi:10.3390/magnetochemistry9060157
  • Van Sang, L.; Yano, A.; Osaka, A. I.; Sugimura, N.; Washizu, H. Addition of Solid Oxide Particles for Friction Reduction. Tribology Letters 2022, 70. doi:10.1007/s11249-022-01600-8
  • Tarkistani, M. A. M.; Komalla, V.; Kayser, V. Recent Advances in the Use of Iron-Gold Hybrid Nanoparticles for Biomedical Applications. Nanomaterials (Basel, Switzerland) 2021, 11, 1227. doi:10.3390/nano11051227
  • Alsharif, N.; Eshaghi, B.; Reinhard, B. M.; Brown, K. A. Physiologically Relevant Mechanics of Biodegradable Polyester Nanoparticles. Nano letters 2020, 20, 7536–7542. doi:10.1021/acs.nanolett.0c03004
  • Zhu, L.; Ding, X.; Wu, X. A novel method for improving the anti-pilling property of knitted wool fabric with engineered water nanostructures. Journal of Materials Research and Technology 2020, 9, 3649–3658. doi:10.1016/j.jmrt.2020.01.102
  • An, R.; Wu, M.; Li, J.; Qiu, X.; Shah, F. U.; Li, J. On the ionic liquid films ‘pinned’ by core–shell structured Fe3O4@carbon nanoparticles and their tribological properties. Physical chemistry chemical physics : PCCP 2019, 21, 26387–26398. doi:10.1039/c9cp05905a
  • Staedler, T.; Diehl, K.; Fuchs, R.; Meyer, J.; Kumar, A.; Jiang, X. Nanoindentation Based Colloid Probe Technique: A Unique Opportunity to Study the Mechanical Contact of Individual Micron Sized Particles. Particles in Contact; Springer International Publishing, 2019; pp 437–455. doi:10.1007/978-3-030-15899-6_15
  • Yamashita, N.; Ma, Z.; Park, S.; Kawai, K.; Hirai, Y.; Tsuchiya, T.; Tabata, O. Formation of gold nanoparticle dimers on silicon by sacrificial DNA origami technique. Micro & Nano Letters 2017, 12, 854–859. doi:10.1049/mnl.2017.0426
  • Venkatesan, M.; Palanikumar, K.; Boopathy, S. R. Experimental investigation and analysis on the wear properties of glass fiber and CNT reinforced hybrid polymer composites. Science and Engineering of Composite Materials 2017, 25, 963–974. doi:10.1515/secm-2017-0068
  • Bhushan, B. Nanotribology and Nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS Materials and Devices. Nanotribology and Nanomechanics; Springer International Publishing, 2017; pp 797–907. doi:10.1007/978-3-319-51433-8_16
  • Moeinzadeh, S.; Jabbari, E. Nanoparticles and Their Applications. Springer Handbooks; Springer Berlin Heidelberg, 2017; pp 335–361. doi:10.1007/978-3-662-54357-3_11
  • Bhushan, B. MEMS/NEMS and BioMEMS/BioNEMS: Tribology, Mechanics, Materials and Devices. Springer Handbooks; Springer Berlin Heidelberg, 2017; pp 1331–1416. doi:10.1007/978-3-662-54357-3_38
  • Maharaj, D. Friction, wear and mechanical behavior of nano-objects on the nanoscale. Materials Science and Engineering: R: Reports 2015, 95, 1–43. doi:10.1016/j.mser.2015.07.001
  • Maharaj, D.; Bhushan, B. Nanomechanical behavior of MoS2 and WS2 multi-walled nanotubes and Carbon nanohorns. Scientific reports 2015, 5, 8539. doi:10.1038/srep08539
  • Maharaj, D.; Bhushan, B. Scale effects of nanomechanical properties and deformation behavior of Au nanoparticle and thin film using depth sensing nanoindentation. Beilstein journal of nanotechnology 2014, 5, 822–836. doi:10.3762/bjnano.5.94
  • Meyer, J.; Fuchs, R.; Staedler, T.; Jiang, X. Effect of surface roughness on sliding friction of micron-sized glass beads. Friction 2014, 2, 255–263. doi:10.1007/s40544-014-0045-3
  • Maharaj, D.; Bhushan, B. Nanomanipulation, nanotribology and nanomechanics of Au nanorods in dry and liquid environments using an AFM and depth sensing nanoindenter. Nanoscale 2014, 6, 5838–5852. doi:10.1039/c3nr06646k
  • Kang, C.; Ashurst, R. W.; Shim, J.-J.; Huh, Y. S.; Roh, C. Development of uniform density control with self-assembled colloidal gold nanoparticles on a modified silicon substrate. Bioprocess and biosystems engineering 2014, 37, 1997–2004. doi:10.1007/s00449-014-1175-8
Other Beilstein-Institut Open Science Activities