Dye-doped spheres with plasmonic semi-shells: Lasing modes and scattering at realistic gain levels

Nikita Arnold, Boyang Ding, Calin Hrelescu and Thomas A. Klar
Beilstein J. Nanotechnol. 2013, 4, 974–987. https://doi.org/10.3762/bjnano.4.110

Cite the Following Article

Dye-doped spheres with plasmonic semi-shells: Lasing modes and scattering at realistic gain levels
Nikita Arnold, Boyang Ding, Calin Hrelescu and Thomas A. Klar
Beilstein J. Nanotechnol. 2013, 4, 974–987. https://doi.org/10.3762/bjnano.4.110

How to Cite

Arnold, N.; Ding, B.; Hrelescu, C.; Klar, T. A. Beilstein J. Nanotechnol. 2013, 4, 974–987. doi:10.3762/bjnano.4.110

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Arruda, T. J.; Bachelard, R.; Weiner, J.; Slama, S.; Courteille, P. W. Controlling photon bunching and antibunching of two quantum emitters near a core-shell sphere. Physical Review A 2020, 101, 023828. doi:10.1103/physreva.101.023828
  • Chipouline, A.; Küppers, F. Application of the Model of “Quantum” Metamaterials: Regular and Stochastic Dynamics of Nanolaser (Spaser). Optical Metamaterials: Qualitative Models; Springer International Publishing, 2018; pp 225–255. doi:10.1007/978-3-319-77520-3_11
  • Wang, Z.; Meng, X.; Kildishev, A. V.; Boltasseva, A.; Shalaev, V. M. Nanolasers Enabled by Metallic Nanoparticles: From Spasers to Random Lasers. Laser & Photonics Reviews 2017, 11, 1700212. doi:10.1002/lpor.201700212
  • Petrosyan, L. S.; Shahbazyan, T. V. Spaser quenching by off-resonant plasmon modes. Physical Review B 2017, 96, 075423. doi:10.1103/physrevb.96.075423
  • Vasić, B.; Gajić, R. Optical modulation based on tunable light absorption and amplification in metasurfaces coupled with gain medium. Optics letters 2017, 42, 2181–2184. doi:10.1364/ol.42.002181
  • Xingxing, C.; Chen, Y.-H.; Qin, J.; Zhao, D.; Ding, B.; Blaikie, R. J.; Qiu, M. Mode Modification of Plasmonic Gap Resonances Induced by Strong Coupling with Molecular Excitons. Nano letters 2017, 17, 3246–3251. doi:10.1021/acs.nanolett.7b00858
  • Shahbazyan, T. V. Mode Volume, Energy Transfer, and Spaser Threshold in Plasmonic Systems with Gain. ACS Photonics 2017, 4, 1003–1008. doi:10.1021/acsphotonics.7b00088
  • Passarelli, N.; Bustos-Marún, R. A.; Coronado, E. A. Spaser and Optical Amplification Conditions in Gold-Coated Active Nanoparticles. The Journal of Physical Chemistry C 2016, 120, 24941–24949. doi:10.1021/acs.jpcc.6b05240
  • Veltri, A.; Chipouline, A.; Aradian, A. Multipolar, time-dynamical model for the loss compensation and lasing of a spherical plasmonic nanoparticle spaser immersed in an active gain medium. Scientific reports 2016, 6, 33018. doi:10.1038/srep33018
  • Pustovit, V. N.; Urbas, A.; Chipouline, A.; Shahbazyan, T. V. Coulomb and quenching effects in small nanoparticle-based spasers. Physical Review B 2016, 93, 165432. doi:10.1103/physrevb.93.165432
  • Jin, W.; Khandekar, C.; Pick, A.; Polimeridis, A. G.; Rodriguez, A. W. Amplified and directional spontaneous emission from arbitrary composite bodies: A self-consistent treatment of Purcell effect below threshold. Physical Review B 2016, 93, 125415. doi:10.1103/physrevb.93.125415
  • Arnold, N.; Hrelescu, C.; Klar, T. A. Minimal spaser threshold within electrodynamic framework: Shape, size and modes. Annalen der Physik 2015, 528, 295–306. doi:10.1002/andp.201500318
  • Arnold, N.; Piglmayer, K.; Kildishev, A. V.; Klar, T. A. Spasers with retardation and gain saturation: electrodynamic description of fields and optical cross-sections. Optical Materials Express 2015, 5, 2546–2577. doi:10.1364/ome.5.002546
  • Xingxing, C.; Yang, Y.; Chen, Y.-H.; Qiu, M.; Blaikie, R. J.; Ding, B. Probing Plasmonic Gap Resonances between Gold Nanorods and a Metallic Surface. The Journal of Physical Chemistry C 2015, 119, 18627–18634. doi:10.1021/acs.jpcc.5b06006
  • Xingxing, C.; Chen, Y.-H.; Qiu, M.; Blaikie, R. J.; Ding, B. Control of fluorescence enhancement and directionality upon excitations in a thin-film system. physica status solidi (b) 2015, 252, 2222–2229. doi:10.1002/pssb.201552155
  • Ding, B.; Qiu, M.; Blaikie, R. J. Manipulating light absorption in dye-doped dielectric films on reflecting surfaces. Optics express 2014, 22, 25965–25975. doi:10.1364/oe.22.025965
  • Meixner, A. J.; Leiderer, P. Optical near-fields & nearfield optics. Beilstein journal of nanotechnology 2014, 5, 186–187. doi:10.3762/bjnano.5.19
Other Beilstein-Institut Open Science Activities