Cite the Following Article
Electronic and transport properties of kinked graphene
Jesper Toft Rasmussen, Tue Gunst, Peter Bøggild, Antti-Pekka Jauho and Mads Brandbyge
Beilstein J. Nanotechnol. 2013, 4, 103–110.
https://doi.org/10.3762/bjnano.4.12
How to Cite
Rasmussen, J. T.; Gunst, T.; Bøggild, P.; Jauho, A.-P.; Brandbyge, M. Beilstein J. Nanotechnol. 2013, 4, 103–110. doi:10.3762/bjnano.4.12
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Bazrafshan, M. A.; Khoeini, F. Flexible thermoelectrics in crossed graphene/hBN composites. Scientific reports 2024, 14, 1079. doi:10.1038/s41598-024-51652-0
- Talla, J. A.; Msallam, Z. M. Influence of Induced Ripples on Optical Properties of Graphene: Density Functional Theory. Russian Journal of Inorganic Chemistry 2022, 67, S52–S62. doi:10.1134/s0036023622602057
- Talla, J. A.; Ahmad, M. S. Structural and Electronic Properties of Rippled Graphene Monolayer: Density Functional Theory. Journal of Electronic Materials 2022, 51, 2464–2474. doi:10.1007/s11664-022-09518-6
- Kim, H. W.; Joo, W.-J.; Jang, W.-J.; Kim, S. H. Embedded Pseudo Graphene Nanoribbons Oriented Via Ge(110) Surface Reconstruction. SSRN Electronic Journal 2022. doi:10.2139/ssrn.4133355
- Talla, J. A.; Almahmoud, E. A.; Abu-Farsakh, H. Rippling Effect on the Electrical Properties of Boron Nitride Monolayer: Density Functional Theory. Semiconductors 2021, 55, 696–703. doi:10.1134/s1063782621080182
- Snapp, P.; Heiranian, M.; Hwang, M. T.; Bashir, R.; Aluru, N. R.; Nam, S. Current understanding and emerging applications of 3D crumpling mediated 2D material-liquid interactions. Current Opinion in Solid State and Materials Science 2020, 24, 100836. doi:10.1016/j.cossms.2020.100836
- Sevinçli, H.; Roche, S.; Cuniberti, G.; Brandbyge, M.; Gutierrez, R.; Sandonas, L. M. Green function, quasi-classical Langevin and Kubo-Greenwood methods in quantum thermal transport. Journal of physics. Condensed matter : an Institute of Physics journal 2019, 31, 273003. doi:10.1088/1361-648x/ab119a
- Özbal, G.; Falkenberg, J. T.; Brandbyge, M.; Senger, R. T.; Sevinçli, H. Directed growth of hydrogen lines on graphene: High-throughput simulations powered by evolutionary algorithm. Physical Review Materials 2018, 2, 073406. doi:10.1103/physrevmaterials.2.073406
- Ortiz-Medina, J.; Inukai, S.; Araki, T.; Morelos-Gomez, A.; Cruz-Silva, R.; Takeuchi, K.; Noguchi, T.; Kawaguchi, T.; Terrones, M.; Endo, M. Robust water desalination membranes against degradation using high loads of carbon nanotubes. Scientific reports 2018, 8, 2748. doi:10.1038/s41598-018-21192-5
- Wu, Y.; Zhai, D.; Pan, C.; Cheng, B.; Taniguchi, T.; Watanabe, K.; Sandler, N.; Bockrath, M. Quantum Wires and Waveguides Formed in Graphene by Strain. Nano letters 2017, 18, 64–69. doi:10.1021/acs.nanolett.7b03167
- Hammouri, M.; Vasiliev, I. Ab initio study of the electronic and transport properties of waved graphene nanoribbons. Physica E: Low-dimensional Systems and Nanostructures 2017, 89, 170–176. doi:10.1016/j.physe.2017.02.019
- Jacobsen, K. W.; Falkenberg, J. T.; Papior, N. R.; Bøggild, P.; Jauho, A.-P.; Brandbyge, M. All-graphene edge contacts: Electrical resistance of graphene T-junctions. Carbon 2016, 101, 101–106. doi:10.1016/j.carbon.2016.01.084
- Chen, X.; Raston, C. L. Liquid interface evolution of polyhedral-like graphene. Chemical communications (Cambridge, England) 2015, 51, 14609–14612. doi:10.1039/c5cc05888k
- Falkenberg, J. T.; Brandbyge, M. Simple and efficient way of speeding up transmission calculations with k-point sampling. Beilstein journal of nanotechnology 2015, 6, 1603–1608. doi:10.3762/bjnano.6.164
- Cartamil-Bueno, S. J.; Rodríguez-Bolívar, S. I-V characteristics of in-plane and out-of-plane strained edge-hydrogenated armchair graphene nanoribbons. Journal of Applied Physics 2015, 117, 244504. doi:10.1063/1.4923225
- Ferrari, A. C.; Bonaccorso, F.; Fal'ko, V. I.; Novoselov, K. S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V.; Pugno, N. M.; Garrido, J. A.; Sordan, R.; Bianco, A.; Ballerini, L.; Prato, M.; Lidorikis, E.; Kivioja, J.; Marinelli, C.; Ryhänen, T.; Morpurgo, A. F.; Coleman, J. N.; Nicolosi, V.; Colombo, L.; Fert, A.; García-Hernández, M.; Bachtold, A.; Schneider, G. F.; Guinea, F.; Dekker, C.; Barbone, M.; Sun, Z.; Galiotis, C.; Grigorenko, A. N.; Konstantatos, G.; Kis, A.; Katsnelson, M. I.; Vandersypen, L. M. K.; Loiseau, A.; Morandi, V.; Neumaier, D.; Treossi, E.; Pellegrini, V.; Polini, M.; Tredicucci, A.; Williams, G. M.; Hong, B. H.; Ahn, J. H.; Kim, J. M.; Zirath, H.; van Wees, B. J.; van der Zant, H. S. J.; Occhipinti, L.; di Matteo, A.; Kinloch, I. A.; Seyller, T.; Quesnel, E.; Feng, X.; Teo, K.; Rupesinghe, N.; Hakonen, P.; Neil, S. R. T.; Tannock, Q.; Löfwander, T.; Kinaret, J. M. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7, 4598–4810. doi:10.1039/c4nr01600a
- Hallam, T.; Shakouri, A.; Poliani, E.; Rooney, A. P.; Ivanov, I.; Potie, A.; Taylor, H.; Bonn, M.; Turchinovich, D.; Haigh, S. J.; Maultzsch, J.; Duesberg, G. S. Controlled folding of graphene: GraFold printing. Nano letters 2015, 15, 857–863. doi:10.1021/nl503460p
- Li, C.; Koslowski, M.; Strachan, A. Engineering curvature in graphene ribbons using ultrathin polymer films. Nano letters 2014, 14, 7085–7089. doi:10.1021/nl503527w
- Sevincli, H.; Brandbyge, M. Phonon scattering in graphene over substrate steps. Applied Physics Letters 2014, 105, 153108. doi:10.1063/1.4898066
- Gorman, P. D.; Duffy, J. M.; Power, S. R.; Ferreira, M. S. RKKY interaction between extended magnetic defect lines in graphene. Physical Review B 2014, 90, 125411. doi:10.1103/physrevb.90.125411