Supporting Information
The Supporting Information files show the evolution of the nanoparticle during extrusion from a 15 Å orifice showing displacive plasticity; evolution of the nanoparticle during extrusion from a 11 Å orifice showing surface amorphisation; and simultaneous dislocation nucleation at the onset of plasticity in different orientations of the nanoparticle during extrusion from a 15 Å orifice.
Supporting Information File 1: Extrusion from a 15 Å orifice | ||
Format: AVI | Size: 2.6 MB | Download |
Supporting Information File 2: Extrusion from a 11 Å orifice | ||
Format: AVI | Size: 2.7 MB | Download |
Supporting Information File 3: Simultaneous nucleation in different orientations of the system | ||
Format: PDF | Size: 1.3 MB | Download |
Cite the Following Article
Plasticity of Cu nanoparticles: Dislocation-dendrite-induced strain hardening and a limit for displacive plasticity
Antti Tolvanen and Karsten Albe
Beilstein J. Nanotechnol. 2013, 4, 173–179.
https://doi.org/10.3762/bjnano.4.17
How to Cite
Tolvanen, A.; Albe, K. Beilstein J. Nanotechnol. 2013, 4, 173–179. doi:10.3762/bjnano.4.17
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Katakam, K. C.; Katakareddi, G.; Mehta, K. K.; Yedla, N. Mechanical stability and microstructural evolution during torsion in pristine and defect nickel nanowires of different orientations: a molecular dynamics simulation study. Molecular Simulation 2023, 49, 829–844. doi:10.1080/08927022.2023.2193650
- Wei, F. J.; Chou, B. Y.; Fung, K. Z.; Tsai, S. Y. Thermomechanical properties of cold-sprayed copper coatings from differently fabricated powders. Surface and Coatings Technology 2022, 434, 128128. doi:10.1016/j.surfcoat.2022.128128
- Gupta, P.; Vaduganathan, K.; Yedla, N. Elevated Temperature Compression Behavior of Al–Cu 50 Zr 50 Nano-laminates. Transactions of the Indian Institute of Metals 2020, 73, 1579–1585. doi:10.1007/s12666-020-01933-9
- Chitrakar, T. V.; Noiseau, G. J. J.; Keto, J. W.; Becker, M. F.; Kovar, D. An experimental and computational study of high speed two-particle impacts of Ag nanoparticles. Journal of Applied Physics 2019, 125, 195104. doi:10.1063/1.5063345
- Chitrakar, T. V.; Keto, J. W.; Becker, M. F.; Kovar, D. Particle deposition and deformation from high speed impaction of Ag nanoparticles. Acta Materialia 2017, 135, 252–262. doi:10.1016/j.actamat.2017.05.062
- Krishan, J.; Gupta, P.; Vaduganathan, K.; Yedla, N. Superplastic Pd50Pt50 monocrystalline bimetallic alloy nanowire: a molecular dynamics simulation study. Metallurgical Research & Technology 2017, 114, 302. doi:10.1051/metal/2016067
- Murr, L. E. Applications and Examples of Multiscale Computer Simulations in Materials Science and Engineering. Handbook of Materials Structures, Properties, Processing and Performance; Springer International Publishing, 2016; pp 1–17. doi:10.1007/978-3-319-01905-5_61-2
- Millán, E. N.; Tramontina, D.; Urbassek, H. M.; Bringa, E. M. Nucleation of plasticity in nanoparticle collisions. Physical review. E 2016, 93, 063004. doi:10.1103/physreve.93.063004
- Millán, E. N.; Tramontina, D.; Urbassek, H. M.; Bringa, E. M. The elastic–plastic transition in nanoparticle collisions. Physical chemistry chemical physics : PCCP 2016, 18, 3423–3429. doi:10.1039/c5cp05150a
- Murr, L. E. Applications and Examples of Multiscale Computer Simulations in Materials Science and Engineering. Handbook of Materials Structures, Properties, Processing and Performance; Springer International Publishing, 2015; pp 1123–1142. doi:10.1007/978-3-319-01815-7_61
- Murr, L. E. Applications and Examples of Multiscale Computer Simulations in Materials Science and Engineering. Handbook of Materials Structures, Properties, Processing and Performance; Springer International Publishing, 2014; pp 1–18. doi:10.1007/978-3-319-01905-5_61-1
- Murr, L. E.
- Kothapalle, T.; Melachuri, A. V.; Rogers, J. J.; Tran, K. B.; Becker, M. F.; Kovar, D. Simulation of high strain rate contact of single crystal Al spheres. Computational Materials Science 246, 113415. doi:10.1016/j.commatsci.2024.113415