Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi® bionanocomposite

Hamonangan Nainggolan, Saharman Gea, Emiliano Bilotti, Ton Peijs and Sabar D. Hutagalung
Beilstein J. Nanotechnol. 2013, 4, 325–329. https://doi.org/10.3762/bjnano.4.37

Cite the Following Article

Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi® bionanocomposite
Hamonangan Nainggolan, Saharman Gea, Emiliano Bilotti, Ton Peijs and Sabar D. Hutagalung
Beilstein J. Nanotechnol. 2013, 4, 325–329. https://doi.org/10.3762/bjnano.4.37

How to Cite

Nainggolan, H.; Gea, S.; Bilotti, E.; Peijs, T.; Hutagalung, S. D. Beilstein J. Nanotechnol. 2013, 4, 325–329. doi:10.3762/bjnano.4.37

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Hernández-Guerrero, M.; Gomez-Maldonado, D.; Gutiérrez-Castañeda, J.; Revah, S.; Campos-Terán, J.; Vigueras-Ramírez, G. Assessment of Culture Systems to Produce Bacterial Cellulose with a Kombucha Consortium. Applied biochemistry and biotechnology 2024. doi:10.1007/s12010-024-04929-z
  • Hejna, A.; Barczewski, M.; Kosmela, P.; Mysiukiewicz, O.; Tercjak, A.; Piasecki, A.; Saeb, M. R.; Szostak, M. Sustainable chemically modified poly(butylene adipate-co-terephthalate)/thermoplastic starch/poly(ε-caprolactone)/cellulose biocomposites: looking at the bulk through the surface. Journal of Materials Science 2024, 59, 1327–1347. doi:10.1007/s10853-023-09268-8
  • Kilinc, M.; Ay, E.; Kut, D. Thermal, Chemical and Mechanical Properties of Regenerated Bacterial Cellulose Coated Cotton Fabric. Journal of Natural Fibers 2021, 19, 7834–7851. doi:10.1080/15440478.2021.1958416
  • Kilinc, M.; Ay, E.; Kut, D. Thermal, Chemical and Mechanical Properties of Regenerated Bacterial Cellulose Coated Cotton Fabric. Journal of Natural Fibers 2021, 1–18.
  • Gofman, I. V.; Nikolaeva, A. L.; Khripunov, A. K.; Ivan’kova, E. M.; Shabunin, A. S.; Yakimansky, A. V.; Romanov, D. P.; Popov, A.; Ermakov, A. M.; Solomevich, S. O.; Bychkovsky, P. M.; Baranchikov, A. E.; Ivanov, V. Bacterial Cellulose-Based Nanocomposites Containing Ceria and Their Use in the Process of Stem Cell Proliferation. Polymers 2021, 13, 1999. doi:10.3390/polym13121999
  • Lipovka, A.; Kharchenko, A. V.; Dubovoy, A.; Filipenko, M. L.; Stupak, V. V.; Mayorov, A.; Fomenko, V.; Geydt, P.; Parshin, D. V. The Effect of Adding Modified Chitosan on the Strength Properties of Bacterial Cellulose for Clinical Applications. Polymers 2021, 13, 1995. doi:10.3390/polym13121995
  • Ossowicz-Rupniewska, P.; Rakoczy, R.; Nowak, A.; Konopacki, M.; Klebeko, J.; Świątek, E.; Janus, E.; Duchnik, W.; Wenelska, K.; Kucharski, Ł.; Klimowicz, A. Transdermal Delivery Systems for Ibuprofen and Ibuprofen Modified with Amino Acids Alkyl Esters Based on Bacterial Cellulose. International journal of molecular sciences 2021, 22, 6252. doi:10.3390/ijms22126252
  • Aldas, M.; Pavon, C.; Ferri, J. M.; Arrieta, M. P.; López-Martínez, J. Films Based on Mater-Bi® Compatibilized with Pine Resin Derivatives: Optical, Barrier, and Disintegration Properties. Polymers 2021, 13, 1506. doi:10.3390/polym13091506
  • Pandit, A.; Kumar, R. A Review on Production, Characterization and Application of Bacterial Cellulose and Its Biocomposites. Journal of Polymers and the Environment 2021, 29, 2738–2755. doi:10.1007/s10924-021-02079-5
  • Kumar, V.; Sharma, D. K.; Sandhu, P. P.; Jadaun, J. S.; Sangwan, R. S.; Yadav, S. Sustainable process for the production of cellulose by an Acetobacter pasteurianus RSV-4 (MTCC 25117) on whey medium. Cellulose 2020, 28, 103–116. doi:10.1007/s10570-020-03519-6
  • Marcondes, W. F.; Milagres, A. M. F.; Arantes, V. Co-production of xylo-oligosaccharides, xylose and cellulose nanofibrils from sugarcane bagasse. Journal of biotechnology 2020, 321, 35–47. doi:10.1016/j.jbiotec.2020.07.001
  • Aldas, M.; Rayón, E.; López-Martínez, J.; Arrieta, M. P. A Deeper Microscopic Study of the Interaction between Gum Rosin Derivatives and a Mater-Bi Type Bioplastic. Polymers 2020, 12, 226. doi:10.3390/polym12010226
  • Gonçalves, M. C.; Tischer, C. A.; Kobayashi, R. K. T.; Nakazato, G. Antimicrobial Activity of Nanocrystals. Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies; Springer International Publishing, 2020; pp 209–221. doi:10.1007/978-3-030-31403-3_8
  • Kanerva, M.; Puolakka, A.; Takala, T. M.; Elert, A. M.; Mylläri, V.; Jönkkäri, I.; Sarlin, E.; Seitsonen, J.; Ruokolainen, J.; Saris, P. E. J.; Vuorinen, J. Antibacterial polymer fibres by rosin compounding and melt-spinning. Materials Today Communications 2019, 20, 100527. doi:10.1016/j.mtcomm.2019.05.003
  • Knitter, M.; Czarnecka-Komorowska, D.; Czaja-Jagielska, N.; Szymanowska-Powałowska, D. Manufacturing and Properties of Biodegradable Composites Based on Thermoplastic Starch/Polyethylene-Vinyl Alcohol and Silver Particles. Lecture Notes in Mechanical Engineering; Springer International Publishing, 2019; pp 610–624. doi:10.1007/978-3-030-16943-5_53
  • Pa'e, N.; Salehudin, M. H.; Hassan, N. D.; Marsin, A. M.; Muhamad, I. I. Thermal Behavior of Bacterial Cellulose-Based Hydrogels with Other Composites and Related Instrumental Analysis. Polymers and Polymeric Composites: A Reference Series; Springer International Publishing, 2019; pp 763–787. doi:10.1007/978-3-319-77830-3_26
  • Mohite, B. V.; Koli, S. H.; Patil, S. V. Bacterial Cellulose-Based Hydrogels: Synthesis, Properties, and Applications. Polymers and Polymeric Composites: A Reference Series; Springer International Publishing, 2019; pp 1255–1276. doi:10.1007/978-3-319-77830-3_2
  • Nicolae, A.; Grumezescu, A. M. Polymer fibers in biomedical engineering. Materials for Biomedical Engineering; Elsevier, 2019; pp 1–20. doi:10.1016/b978-0-12-816872-1.00001-7
  • Chai, J. M.; Adnan, A. Effect of different nitrogen source combinations on microbial cellulose production by Pseudomonas aeruginosa in batch fermentation. IOP Conference Series: Materials Science and Engineering 2018, 440, 012044. doi:10.1088/1757-899x/440/1/012044
  • Pa'e, N.; Salehudin, M. H.; Hassan, N. D.; Marsin, A. M.; Muhamad, I. I. Thermal Behavior of Bacterial Cellulose Based Hydrogels with Other Composites and Related Instrumental Analysis. Polymers and Polymeric Composites: A Reference Series; Springer International Publishing, 2018; pp 1–25. doi:10.1007/978-3-319-76573-0_26-1

Patents

  • AWADHIYA ANKUR; VERMA VIVEK. A PROCESS FOR PREPARATION OF BIOPLASTICS. WO 2016156930 A1, Oct 6, 2016.
Other Beilstein-Institut Open Science Activities