Kelvin probe force microscopy of nanocrystalline TiO2 photoelectrodes

Alex Henning, Gino Günzburger, Res Jöhr, Yossi Rosenwaks, Biljana Bozic-Weber, Catherine E. Housecroft, Edwin C. Constable, Ernst Meyer and Thilo Glatzel
Beilstein J. Nanotechnol. 2013, 4, 418–428. https://doi.org/10.3762/bjnano.4.49

Cite the Following Article

Kelvin probe force microscopy of nanocrystalline TiO2 photoelectrodes
Alex Henning, Gino Günzburger, Res Jöhr, Yossi Rosenwaks, Biljana Bozic-Weber, Catherine E. Housecroft, Edwin C. Constable, Ernst Meyer and Thilo Glatzel
Beilstein J. Nanotechnol. 2013, 4, 418–428. https://doi.org/10.3762/bjnano.4.49

How to Cite

Henning, A.; Günzburger, G.; Jöhr, R.; Rosenwaks, Y.; Bozic-Weber, B.; Housecroft, C. E.; Constable, E. C.; Meyer, E.; Glatzel, T. Beilstein J. Nanotechnol. 2013, 4, 418–428. doi:10.3762/bjnano.4.49

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kim, T.; Park, T. H.; Lee, J. W.; Lee, D.; Mun, S.; Kim, G.; Kim, Y.; Kim, G.; Park, J. W.; Lee, K.; Lee, S. W.; Jeon, S.; Ryu, D. Y.; Shim, W.; Kim, J.; Park, C. Self‐Powered Sweat‐Responsive Structural Color Display. Advanced Functional Materials 2024, 34. doi:10.1002/adfm.202314721
  • Krysova, H.; Mansfeldova, V.; Tarabkova, H.; Pisarikova, A.; Hubicka, Z.; Kavan, L. High-quality dense ZnO thin films: work function and photo/electrochemical properties. Journal of Solid State Electrochemistry 2024, 28, 2531–2546. doi:10.1007/s10008-023-05766-6
  • Checa, M.; Fuhr, A. S.; Sun, C.; Vasudevan, R.; Ziatdinov, M.; Ivanov, I.; Yun, S. J.; Xiao, K.; Sehirlioglu, A.; Kim, Y.; Sharma, P.; Kelley, K. P.; Domingo, N.; Jesse, S.; Collins, L. High-speed mapping of surface charge dynamics using sparse scanning Kelvin probe force microscopy. Nature communications 2023, 14, 7196. doi:10.1038/s41467-023-42583-x
  • Pain, S. L.; Khorani, E.; Niewelt, T.; Wratten, A.; Walker, M.; Grant, N. E.; Murphy, J. D. Stable chemical enhancement of passivating nanolayer structures grown by atomic layer deposition on silicon. Nanoscale 2023, 15, 10593–10605. doi:10.1039/d3nr01374j
  • Zance, S. S.; Pandiarajan, A.; Ravichandran, S. Lanthanum Hydroxide Clusters Implanted TiO2 Nanotube Arrays for Enhanced Photoelectrochemical Water Splitting. Energy & Fuels 2023, 37, 9530–9537. doi:10.1021/acs.energyfuels.3c00021
  • Checa, M.; Kelley, K.; Sun, C.; Vasudevan, R.; Ziatdinov, M.; Ivanov, I.; Yun, S. J.; Xiao, K.; SEHIRLIOGLU, A.; Kim, Y.; Sharma, P.; Domingo, N.; Jesse, S.; Collins, L. High speed mapping of surface charge dynamics via Spiral Scanning Kelvin Probe Force Microscopy. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-2678612/v1
  • Andronic, L.; Moldarev, D.; Deribew, D.; Moons, E.; Karazhanov, S. Z. Photocatalytic self-cleaning properties of thin films of photochromic yttrium oxyhydride. Journal of Solid State Chemistry 2022, 316, 123599. doi:10.1016/j.jssc.2022.123599
  • Pichois, M. D.; Henning, X.; Hurier, M. A.; Vomir, M.; Barsella, A.; Mager, L.; Donnio, B.; Gallani, J. L.; Rastei, M. V. Photovoltaic and photothermal effects induced by visible laser radiation in atomic force microscopy probes. Ultramicroscopy 2022, 241, 113601. doi:10.1016/j.ultramic.2022.113601
  • Miyazaki, M.; Sugawara, Y.; Li, Y. J. Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy. Beilstein journal of nanotechnology 2022, 13, 712–720. doi:10.3762/bjnano.13.63
  • Yasakau, K. A.; Maltseva, A.; Lamaka, S. V.; Mei, D.; Orvi, H.; Volovitch, P.; Ferreira, M. G. S.; Zheludkevich, M. L. The effect of carboxylate compounds on Volta potential and corrosion inhibition of Mg containing different levels of iron. Corrosion Science 2022, 194, 109937. doi:10.1016/j.corsci.2021.109937
  • Yoon, J.; Hou, Y.; Knoepfel, A. M.; Yang, D.; Ye, T.; Zheng, L.; Yennawar, N. H.; Sanghadasa, M.; Priya, S.; Wang, K. Bio-inspired strategies for next-generation perovskite solar mobile power sources. Chemical Society reviews 2021, 50, 12915–12984. doi:10.1039/d0cs01493a
  • Clark, P. C. J.; Lewis, N.; Ke, J. C. R.; Ahumada-Lazo, R.; Chen, Q.; Neo, D. C. J.; Gaulding, E. A.; Pach, G. F.; Píš, I.; Silly, M. G.; Flavell, W. R. Surface band bending and carrier dynamics in colloidal quantum dot solids. Nanoscale 2021, 13, 17793–17806. doi:10.1039/d1nr05436h
  • Luna, M.; Barawi, M.; Gomez-Monivas, S.; Colchero, J.; Rodríguez-Peña, M.; Yang, S.; Zhao, X.; Lu, Y.-H.; Chintala, R. C.; Reñones, P.; Altoe, V.; Martínez, L.; Huttel, Y.; Kawasaki, S.; Weber-Bargioni, A.; de la Peña O’Shea, V. A.; Yang, P.; Ashby, P. D.; Salmeron, M. Photoinduced Charge Transfer and Trapping on Single Gold Metal Nanoparticles on TiO2. ACS applied materials & interfaces 2021, 13, 50531–50538. doi:10.1021/acsami.1c13662
  • Pino-Rios, R.; Montenegro-Pohlhammer, N.; Cárdenas-Jirón, G. I. Assessment of New Expanded Porpholactones as UV/Vis/NIR Chromophores for Dye-Sensitized Solar Cell Applications. The journal of physical chemistry. A 2021, 125, 2267–2275. doi:10.1021/acs.jpca.0c11188
  • Mansfeldova, V.; Zlamalova, M.; Tarábková, H.; Janda, P.; Vorokhta, M.; Piliai, L.; Kavan, L. Work Function of TiO2 (Anatase, Rutile, and Brookite) Single Crystals: Effects of the Environment. The Journal of Physical Chemistry C 2021, 125, 1902–1912. doi:10.1021/acs.jpcc.0c10519
  • Ulusu, Y.; Eczacioglu, N.; Gökçe, İ. Sustainable biomaterials for solar energy technologies. Sustainable Material Solutions for Solar Energy Technologies; Elsevier, 2021; pp 557–592. doi:10.1016/b978-0-12-821592-0.00019-4
  • Lohar, G. M.; Rupnawar, D. V.; Shejawal, R. V.; Fulari, A. V. Preparation of natural dyes from salvia and spathodea for TiO 2 -based dye-sensitized solar cells (DSSCs) and their electrochemical impedance spectroscopic study under light and dark conditions. Bulletin of Materials Science 2020, 43, 1–8. doi:10.1007/s12034-020-02180-w
  • Chindeka, F.; Mashazi, P.; Britton, J.; Oluwole, D. O.; Mapukata, S.; Nyokong, T. Fabrication of dye-sensitized solar cells based on push-pull asymmetrical substituted zinc and copper phthalocyanines and reduced graphene oxide nanosheets. Journal of Photochemistry and Photobiology A: Chemistry 2020, 399, 112612. doi:10.1016/j.jphotochem.2020.112612
  • Borges-Martínez, M.; Montenegro-Pohlhammer, N.; Yamamoto, Y.; Baruah, T.; Cárdenas-Jirón, G. I. Zn(II)-Porphyrin–Squaraine Dyads as Potential Components for Dye-Sensitized Solar Cells: A Quantum Chemical Study of Optical and Charge Transport Properties. The Journal of Physical Chemistry C 2020, 124, 12968–12981. doi:10.1021/acs.jpcc.0c02865
  • Wrana, D.; Cieślik, K.; Belza, W.; Rodenbücher, C.; Szot, K.; Krok, F. Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation. Beilstein journal of nanotechnology 2019, 10, 1596–1607. doi:10.3762/bjnano.10.155
Other Beilstein-Institut Open Science Activities