Cite the Following Article
The role of electron-stimulated desorption in focused electron beam induced deposition
Willem F. van Dorp, Thomas W. Hansen, Jakob B. Wagner and Jeff T. M. De Hosson
Beilstein J. Nanotechnol. 2013, 4, 474–480.
https://doi.org/10.3762/bjnano.4.56
How to Cite
van Dorp, W. F.; Hansen, T. W.; Wagner, J. B.; De Hosson, J. T. M. Beilstein J. Nanotechnol. 2013, 4, 474–480. doi:10.3762/bjnano.4.56
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Jurczyk, J.; Pillatsch, L.; Berger, L.; Priebe, A.; Madajska, K.; Kapusta, C.; Szymańska, I. B.; Michler, J.; Utke, I. In Situ Time-of-Flight Mass Spectrometry of Ionic Fragments Induced by Focused Electron Beam Irradiation: Investigation of Electron Driven Surface Chemistry inside an SEM under High Vacuum. Nanomaterials (Basel, Switzerland) 2022, 12, 2710. doi:10.3390/nano12152710
- Gale, A.; Fröch, J. E.; Kianinia, M.; Bishop, J. W.; Aharonovich, I.; Toth, M. Recoil implantation using gas-phase precursor molecules. Nanoscale 2021, 13, 9322–9327. doi:10.1039/d1nr00850a
- Yao, X.; Lee, Y.; Ceresoli, D.; Cho, K. First-Principles Study on Electron-Induced Excitations of Atomic Layer Deposition Precursors: Inelastic Electron Wave Packet Scattering with Cobalt Tricarbonyl Nitrosyl Co(CO)3NO Using Time-Dependent Density Functional Theory. The journal of physical chemistry. A 2021, 125, 4524–4533. doi:10.1021/acs.jpca.0c11309
- Pablo-Navarro, J.; Sangiao, S.; Magén, C.; de Teresa, J. M. Nanofabrication - Focused electron beam induced deposition. Nanofabrication; IOP Publishing, 2020; pp 4–1-4-39. doi:10.1088/978-0-7503-2608-7ch4
- Malac, M.; Hettler, S.; Hayashida, M.; Kano, E.; Egerton, R. F.; Beleggia, M. Phase plates in the transmission electron microscope: operating principles and applications. Microscopy (Oxford, England) 2020, 70, 75–115. doi:10.1093/jmicro/dfaa070
- Mavukkandy, M. O.; McBride, S. A.; Warsinger, D. M.; Dizge, N.; Hasan, S. W.; Arafat, H. A. Thin film deposition techniques for polymeric membranes– A review. Journal of Membrane Science 2020, 610, 118258. doi:10.1016/j.memsci.2020.118258
- Hettler, S.; Onoda, J.; Wolkow, R. A.; Pitters, J. L.; Malac, M. Charging of electron beam irradiated amorphous carbon thin films at liquid nitrogen temperature. Ultramicroscopy 2018, 196, 161–166. doi:10.1016/j.ultramic.2018.10.010
- Sanz-Hernández, D.; Fernández-Pacheco, A. Modelling focused electron beam induced deposition beyond Langmuir adsorption. Beilstein journal of nanotechnology 2017, 8, 2151–2161. doi:10.3762/bjnano.8.214
- Hettler, S.; Kano, E.; Dries, M.; Gerthsen, D.; Pfaffmann, L.; Bruns, M.; Beleggia, M.; Malac, M. Charging of carbon thin films in scanning and phase-plate transmission electron microscopy. Ultramicroscopy 2017, 184, 252–266. doi:10.1016/j.ultramic.2017.09.009
- Pablo-Navarro, J.; Sanz-Hernández, D.; Magén, C.; Fernández-Pacheco, A.; de Teresa, J. M. Tuning shape, composition and magnetization of 3D cobalt nanowires grown by focused electron beam induced deposition (FEBID). Journal of Physics D: Applied Physics 2017, 50, 18LT01. doi:10.1088/1361-6463/aa63b4
- Ganner, T.; Sattelkow, J.; Rumpf, B.; Eibinger, M.; Reishofer, D.; Winkler, R.; Nidetzky, B.; Spirk, S.; Plank, H. Direct-Write Fabrication of Cellulose Nano-Structures via Focused Electron Beam Induced Nanosynthesis. Scientific reports 2016, 6, 32451. doi:10.1038/srep32451
- Weiss, T.; Warneke, J.; Zielasek, V.; Swiderek, P.; Bäumer, M. XPS study of thermal and electron-induced decomposition of Ni and Co acetylacetonate thin films for metal deposition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2016, 34, 041515. doi:10.1116/1.4953469
- Pablo-Navarro, J.; Magén, C.; de Teresa, J. M. Three-dimensional core-shell ferromagnetic nanowires grown by focused electron beam induced deposition. Nanotechnology 2016, 27, 285302. doi:10.1088/0957-4484/27/28/285302
- Szkudlarek, A.; Vaz, A. R.; Zhang, Y.; Rudkowski, A.; Kapusta, C.; Erni, R.; Moshkalev, S. A.; Utke, I. Formation of pure Cu nanocrystals upon post-growth annealing of Cu–C material obtained from focused electron beam induced deposition: comparison of different methods. Beilstein journal of nanotechnology 2015, 6, 1508–1517. doi:10.3762/bjnano.6.156
- Cullen, J.; Bahm, A.; Lobo, C. J.; Ford, M. J.; Toth, M. Localized Probing of Gas Molecule Adsorption Energies and Desorption Attempt Frequencies. The Journal of Physical Chemistry C 2015, 119, 15948–15953. doi:10.1021/acs.jpcc.5b00918
- Schmied, R.; Fowlkes, J. D.; Winkler, R.; Rack, P. D.; Plank, H. Fundamental edge broadening effects during focused electron beam induced nanosynthesis. Beilstein journal of nanotechnology 2015, 6, 462–471. doi:10.3762/bjnano.6.47
- Winkler, R.; Szkudlarek, A.; Fowlkes, J. D.; Rack, P. D.; Utke, I.; Plank, H. Toward Ultraflat Surface Morphologies During Focused Electron Beam Induced Nanosynthesis: Disruption Origins and Compensation. ACS applied materials & interfaces 2015, 7, 3289–3297. doi:10.1021/am508052k
- Szkudlarek, A.; Szmyt, W.; Kapusta, C.; Utke, I. Lateral resolution in focused electron beam-induced deposition: scaling laws for pulsed and static exposure. Applied Physics A 2014, 117, 1715–1726. doi:10.1007/s00339-014-8751-2
- Toth, M. Advances in gas-mediated electron beam-induced etching and related material processing techniques. Applied Physics A 2014, 117, 1623–1629. doi:10.1007/s00339-014-8596-8
- Geier, B.; Gspan, C.; Winkler, R.; Schmied, R.; Fowlkes, J. D.; Fitzek, H. M.; Rauch, S.; Rattenberger, J.; Rack, P. D.; Plank, H. Rapid and Highly Compact Purification for Focused Electron Beam Induced Deposits: A Low Temperature Approach Using Electron Stimulated H2O Reactions. The Journal of Physical Chemistry C 2014, 118, 14009–14016. doi:10.1021/jp503442b