Lithium peroxide crystal clusters as a natural growth feature of discharge products in Li–O2 cells

Tatiana K. Zakharchenko, Anna Y. Kozmenkova, Daniil M. Itkis and Eugene A. Goodilin
Beilstein J. Nanotechnol. 2013, 4, 758–762. https://doi.org/10.3762/bjnano.4.86

Supporting Information

Supporting Information File 1: Experimental details.
Format: PDF Size: 311.8 KB Download

Cite the Following Article

Lithium peroxide crystal clusters as a natural growth feature of discharge products in Li–O2 cells
Tatiana K. Zakharchenko, Anna Y. Kozmenkova, Daniil M. Itkis and Eugene A. Goodilin
Beilstein J. Nanotechnol. 2013, 4, 758–762. https://doi.org/10.3762/bjnano.4.86

How to Cite

Zakharchenko, T. K.; Kozmenkova, A. Y.; Itkis, D. M.; Goodilin, E. A. Beilstein J. Nanotechnol. 2013, 4, 758–762. doi:10.3762/bjnano.4.86

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Panchenko, N.; Radina, M.; Kulova, T.; Andreev, V.; Bogdanovskaya, V. Formation of Li2O2 on a dispersed positive electrode material in Li+-containing aprotic electrolytes. Journal of Electroanalytical Chemistry 2024, 968, 118485. doi:10.1016/j.jelechem.2024.118485
  • Bogdanovskaya, V.; Panchenko, N.; Radina, M.; Kulova, T.; Andreev, V. Formation of Li2o2 on a Dispersed Positive Electrode Material in Li+-Containing Aprotic Electrolytes. Elsevier BV 2024. doi:10.2139/ssrn.4834297
  • Zakharchenko, T. K.; Nazarov, M. А.; Golubev, M. V.; Inozemtseva, A. I.; Gulin, A. A.; Itkis, D. M.; Yashina, L. V. On the Role of Electrolyte in Aprotic Mg-O2 Battery Performance. Electrochimica Acta 2023, 463, 142816. doi:10.1016/j.electacta.2023.142816
  • Fasulo, F.; Massaro, A.; Muñoz-García, A. B.; Pavone, M. New Insights on Singlet Oxygen Release from Li-Air Battery Cathode: Periodic DFT Versus CASPT2 Embedded Cluster Calculations. Journal of chemical theory and computation 2023, 19, 5210–5220. doi:10.1021/acs.jctc.3c00393
  • Inozemtseva, A.; Rulev, A.; Zakharchenko, T.; Isaev, V.; Yashina, L.; Itkis, D. Chemistry of Li-air batteries. Comprehensive Inorganic Chemistry III; Elsevier, 2023; pp 324–362. doi:10.1016/b978-0-12-823144-9.00055-8
  • Ma, L.; Wang, A.; Zhang, S.; Zhang, P.; Wang, J. Unraveling the decomposition mechanism of Li2CO3 in the aprotic medium by isotope-labeled differential electrochemical mass spectrometry. Journal of Energy Chemistry 2022, 73, 1–4. doi:10.1016/j.jechem.2022.05.045
  • Wang, L.; Noguchi, H. Oxygen Reduction Reaction Mechanism in Highly Concentrated Lithium Nitrate-Dimethyl Sulfoxide: Effect of Lithium Nitrate Concentration. The Journal of Physical Chemistry C 2022, 126, 11457–11467. doi:10.1021/acs.jpcc.2c01405
  • Didar, B. R.; Yashina, L. V.; Groß, A. First-Principles Study of the Surfaces and Equilibrium Shape of Discharge Products in Li-Air Batteries. ACS applied materials & interfaces 2021, 13, 24984–24994. doi:10.1021/acsami.1c05863
  • Varzi, A.; Thanner, K.; Scipioni, R.; Di Lecce, D.; Hassoun, J.; Dörfler, S.; Altheus, H.; Kaskel, S.; Prehal, C.; Freunberger, S. Current status and future perspectives of lithium metal batteries. Journal of Power Sources 2020, 480, 228803. doi:10.1016/j.jpowsour.2020.228803
  • Kondori, A.; Jiang, Z.; Esmaeilirad, M.; Saray, M. T.; Kakekhani, A.; Kucuk, K.; Delgado, P. N. M.; Maghsoudipour, S.; Hayes, J. M.; Johnson, C. S.; Segre, C. U.; Shahbazian-Yassar, R.; Rappe, A. M.; Asadi, M. Kinetically Stable Oxide Overlayers on Mo3P Nanoparticles Enabling Lithium–Air Batteries with Low Overpotentials and Long Cycle Life. Advanced materials (Deerfield Beach, Fla.) 2020, 32, 2004028. doi:10.1002/adma.202004028
  • Kulova, T. L. A Brief Review of Post-Lithium-Ion Batteries. International Journal of Electrochemical Science 2020, 15, 7242–7259. doi:10.20964/2020.08.22
  • Semenova, A. A.; Veselova, I. A.; Brazhe, N. A.; Shevelkov, A. V.; Goodilin, E. A. Soft chemistry of pure silver as unique plasmonic metal of the Periodic Table of Elements. Pure and Applied Chemistry 2020, 92, 1007–1028. doi:10.1515/pac-2020-0104
  • Torres, A. E.; Ramos, E.; Balbuena, P. B. LiOH Formation from Lithium Peroxide Clusters and the Role of Iodide Additive. The Journal of Physical Chemistry C 2020, 124, 10280–10287. doi:10.1021/acs.jpcc.9b11980
  • Zakharchenko, T. K.; Sergeev, A. V.; Bashkirov, A. D.; Neklyudova, P.; Cervellino, A.; Itkis, D. M.; Yashina, L. V. Homogeneous nucleation of Li2O2 under Li–O2 battery discharge. Nanoscale 2020, 12, 4591–4601. doi:10.1039/c9nr08493b
  • Semenova, A. A.; Tarasov, A.; Goodilin, E. A. Periodic table of elements and nanotechnology. Mendeleev Communications 2019, 29, 479–485. doi:10.1016/j.mencom.2019.09.001
  • Zakharchenko, T. K.; Avdeev, M. V.; Sergeev, A. V.; Chertovich, A. V.; Ivankov, O. I.; Petrenko, V. I.; Shao-Horn, Y.; Yashina, L. V.; Itkis, D. M. Small-angle neutron scattering studies of pore filling in carbon electrodes: mechanisms limiting lithium-air battery capacity. Nanoscale 2019, 11, 6838–6845. doi:10.1039/c9nr00190e
  • Cao, D.; Zhang, S.; Yu, F.; Wu, Y.; Chen, Y. Carbon‐Free Cathode Materials for Li−O2 Batteries. Batteries & Supercaps 2019, 2, 428–439. doi:10.1002/batt.201800133
  • Gudilin, E. A.; Semenova, A. A.; Petrov, A. A.; Tarasov, A.; Lukashin, A. V.; Solntsev, K. Development of Modern Fundamental Materials Science at the Faculty of Materials Science of the Moscow State University. Inorganic Materials 2018, 54, 1330–1362. doi:10.1134/s0020168518130022
  • Cheng, L.; Redfern, P. C.; Lau, K. C.; Assary, R. S.; Narayanan, B.; Curtiss, L. A. Computational Studies of Solubilities of LiO2and Li2O2in Aprotic Solvents. Journal of The Electrochemical Society 2017, 164, E3696–E3701. doi:10.1149/2.0721711jes
  • Sergeev, A. V.; Chertovich, A. V.; Itkis, D. M.; Sen, A.; Gross, A.; Khokhlov, A. R. Electrode/Electrolyte Interface in the Li-O2 Battery: Insight from Molecular Dynamics Study. The Journal of Physical Chemistry C 2017, 121, 14463–14469. doi:10.1021/acs.jpcc.7b03861
Other Beilstein-Institut Open Science Activities