Cite the Following Article
Optimizing the synthesis of CdS/ZnS core/shell semiconductor nanocrystals for bioimaging applications
Li-wei Liu, Si-yi Hu, Ying Pan, Jia-qi Zhang, Yue-shu Feng and Xi-he Zhang
Beilstein J. Nanotechnol. 2014, 5, 919–926.
https://doi.org/10.3762/bjnano.5.105
How to Cite
Liu, L.-w.; Hu, S.-y.; Pan, Y.; Zhang, J.-q.; Feng, Y.-s.; Zhang, X.-h. Beilstein J. Nanotechnol. 2014, 5, 919–926. doi:10.3762/bjnano.5.105
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Stolyarchuk, I. D.; Wojnarowska-Nowak, R.; Nowak, S.; Romerowicz-Misielak, M.; Kuzyk, O. V.; Dan'kiv, O. O.; Stolyarchuk, A. I. Co-Doped CdS Quantum Dots and Their Bionanocomplex with Protein: Interaction and Bioimaging Properties. Springer Proceedings in Physics; Springer Nature Switzerland, 2023; pp 363–384. doi:10.1007/978-3-031-42708-4_24
- Kaur, M.; Sharma, A.; Erdem, O.; Kumar, A.; Demir, H. V.; Sharma, M. Understanding the suitable alloying conditions for highly efficient Cu- and Mn-doped Zn1-xCdxS/ZnS core-shell quantum dots. Optical Materials 2023, 145, 114471. doi:10.1016/j.optmat.2023.114471
- Vaishnavi, B.; Sreelakshmi, T.; Rahina, M.; Murari, M.; Pattabi, R. M. Enhancing the photocatalytic efficiency of CdS nanostructures by ZnS: A case study on the degradation of methylene blue. Materials Today: Proceedings 2023. doi:10.1016/j.matpr.2023.07.001
- Torres, E. T. d. S.; Aoki, R. M.; de Jesus, J. P. A.; Duarte, J. L.; Lourenço, S. A.; da Silva, M. A. T. Synthesis and characterization of CdS/ZnS heterostructures to improve the optical properties of CdS quantum dots. Journal of Luminescence 2023, 257, 119706. doi:10.1016/j.jlumin.2023.119706
- Kalita, P. K.; Nanung, Y.; Das, H. Coulomb-blockade oscillation in CdS, ZnS and CdS/ZnS core-shell quantum dots. Physica Scripta 2023, 98, 25820–025820. doi:10.1088/1402-4896/acb40a
- Sakizadeh, J.; Cline, J. P.; Snyder, M. A.; Kiely, C. J.; McIntosh, S. Biomineralization of Nanocrystalline CdS/ZnS Photocatalysts via Controlled Surface Passivation for Enhanced Hydrogen Evolution. ACS Applied Nano Materials 2022, 5, 2293–2304. doi:10.1021/acsanm.1c03997
- Hajiyeva, F.; Ramazanov, M.; Shirinova, H.; Maharramova, G. Photosensitive hybrid polymer nanocomposites on the base PVDF+CdS/ZnS for solar cells application. Composite Interfaces 2021, 29, 236–254. doi:10.1080/09276440.2021.1934990
- Hajiyeva, F. V.; Ramazanov, M. A.; Shirinova, H. A.; Maharramova, G. Photosensitive hybrid polymer nanocomposites on the base PVDF+CdS/ZnS for solar cells application. Composite Interfaces 2021, 1–19.
- Palanisamy, G.; Bhuvaneswari, K.; Bharathi, G.; Pazhanivel, T.; Dhanalakshmi, M. Improved photocatalytic performance of magnetically recoverable Bi2Te3/CdS/CuFe2O4 nanocomposite for MB dye under visible light exposure. Solid State Sciences 2021, 115, 106584. doi:10.1016/j.solidstatesciences.2021.106584
- Vinh, N. D.; Tan, P.; Van Do, P.; Bharti, S.; Hoa, V. X.; Hien, N. T.; Luyen, N.; Ca, N. X. Effect of dopant concentration and the role of ZnS shell on optical properties of Sm3+ doped CdS quantum dots. RSC advances 2021, 11, 7961–7971. doi:10.1039/d0ra08056j
- Das, H.; Xu, Q.; Datta, P. Effect of ZnS and PbS shell on mem-behavior of CdS quantum dots. Journal of Materials Science: Materials in Electronics 2021, 32, 7049–7060. doi:10.1007/s10854-021-05415-6
- Joicy, S.; Thangadurai, P. Metal Sulfide Nanostructures for Bioimaging and Biosensing Applications. Environmental Chemistry for a Sustainable World; Springer International Publishing, 2021; pp 1–49. doi:10.1007/978-3-030-56413-1_1
- Sun, F.; Zhang, J.; Yang, Q.; Wu, W. Quantum dot biosensor combined with antibody and aptamer for tracing food-borne pathogens. Food Quality and Safety 2021, 5. doi:10.1093/fqsafe/fyab019
- Kuznetsova, Y. V.; Letofsky-Papst, I.; Sochor, B.; Schummer, B.; Sergeev, A. A.; Hofer, F.; Rempel, A. A. Greatly enhanced luminescence efficiency of CdS nanoparticles in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019, 581, 123814. doi:10.1016/j.colsurfa.2019.123814
- Sabir, N.; Qayyum, W.; Ali, F.; Ameen, F. Optical study of the transition metals (M=Cr, Mn, Co, Ni, Cu) doped M-CdS/ZnS core/shell nanoparticles. In Colloidal Nanoparticles for Biomedical Applications XIV, SPIE, 2019; pp 1089207 ff. doi:10.1117/12.2509840
- Hu, S.; Ren, Y.; Wang, Y.; Li, J.; Qu, J.; Liu, L.; Ma, H.; Tang, Y. Surface plasmon resonance enhancement of photoluminescence intensity and bioimaging application of gold nanorod@CdSe/ZnS quantum dots. Beilstein journal of nanotechnology 2019, 10, 22–31. doi:10.3762/bjnano.10.3
- ZarnaniAmir-Hassan; NejadmoghaddamMohammad-Reza; Mirhosseini, M.; MohammadiFereshteh; EskandariMohammad; GhahremanzadehRamin. Bioimaging based on antibody-conjugated amphiphilic polymer-core@shell quantum dots. Emerging Materials Research 2018, 7, 209–217. doi:10.1680/jemmr.17.00067
- Vikram, A.; Kumar, V.; Ramesh, U.; Balakrishnan, K.; Oh, N.; Deshpande, K.; Ewers, T.; Trefonas, P.; Shim, M.; Kenis, P. J. A. A Millifluidic Reactor System for Multistep Continuous Synthesis of InP/ZnSeS Nanoparticles. ChemNanoMat 2018, 4, 943–953. doi:10.1002/cnma.201800160
- Kim, Y.; Chang, M.; Park, B. Near infrared-induced optical gating at the lead-sulfide (PbS)/pentacene interface. Thin Solid Films 2018, 651, 85–90. doi:10.1016/j.tsf.2018.02.002
- Lu, C.; Chen, G.; Yu, B.; Cong, H. Recent Advances of Low Biological Toxicity Ag2S QDs for Biomedical Application. Advanced Engineering Materials 2018, 20, 1700940. doi:10.1002/adem.201700940