The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production

Jakob G. Howalt and Tejs Vegge
Beilstein J. Nanotechnol. 2014, 5, 111–120. https://doi.org/10.3762/bjnano.5.11

Supporting Information

Supporting Information File 1: Additional Figures.
Format: PDF Size: 243.1 KB Download

Cite the Following Article

The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production
Jakob G. Howalt and Tejs Vegge
Beilstein J. Nanotechnol. 2014, 5, 111–120. https://doi.org/10.3762/bjnano.5.11

How to Cite

Howalt, J. G.; Vegge, T. Beilstein J. Nanotechnol. 2014, 5, 111–120. doi:10.3762/bjnano.5.11

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Iqbal, A.; Skulason, E.; Abghoui, Y. Electrochemical Nitrogen Reduction to Ammonia at Ambient Condition on the (111) Facets of Transition Metal Carbonitrides. Chemphyschem : a European journal of chemical physics and physical chemistry 2024, 25, e202300991. doi:10.1002/cphc.202300991
  • Seong, Y.; Kweon, S.; Shim, J. H. Investigation of a Stable and Selective Nitrogen Reduction Reaction Using Encapsulated FeMoS2 Directly Grown on Carbon Cloth. Energy & Fuels 2023, 37, 15967–15975. doi:10.1021/acs.energyfuels.3c02414
  • Ripepi, D.; Schreuders, H.; Mulder, F. M. Effect of Temperature and H Flux on the NH3 Synthesis via Electrochemical Hydrogen Permeation. ChemSusChem 2023, 16, e202300460. doi:10.1002/cssc.202300460
  • Ghoshal, S.; Ghosh, A.; Roy, P.; Ball, B.; Pramanik, A.; Sarkar, P. Recent Progress in Computational Design of Single-Atom/Cluster Catalysts for Electrochemical and Solar-Driven N2 Fixation. ACS Catalysis 2022, 12, 15541–15575. doi:10.1021/acscatal.2c04527
  • Banerjee, A.; Ceballos, B. M.; Kreller, C.; Mukundan, R.; Pilania, G. A first-principles investigation of nitrogen reduction to ammonia on zirconium nitride and oxynitride surfaces. Journal of Materials Science 2022, 57, 10213–10224. doi:10.1007/s10853-022-07311-8
  • Pan, J.; Hansen, H. A.; Vegge, T. Vanadium oxynitrides as stable catalysts for electrochemical reduction of nitrogen to ammonia: the role of oxygen. Journal of Materials Chemistry A 2020, 8, 24098–24107. doi:10.1039/d0ta08313e
  • Liu, A.; Yang, Y.; Ren, X.; Zhao, Q.; Gao, M.; Guan, W.; Meng, F.; Gao, L.; Yang, Q.; Liang, X.; Ma, T. Current Progress of Electrocatalysts for Ammonia Synthesis Through Electrochemical Nitrogen Reduction Under Ambient Conditions. ChemSusChem 2020, 13, 3766–3788. doi:10.1002/cssc.202000487
  • Qing, G.; Ghazfar, R.; Jackowski, S. T.; Habibzadeh, F.; Ashtiani, M. M.; Chen, C. P.; Smith, M. R.; Hamann, T. W. Recent Advances and Challenges of Electrocatalytic N2 Reduction to Ammonia. Chemical reviews 2020, 120, 5437–5516. doi:10.1021/acs.chemrev.9b00659
  • Yang, J.; Weng, W.; Xiao, W. Electrochemical synthesis of ammonia in molten salts. Journal of Energy Chemistry 2020, 43, 195–207. doi:10.1016/j.jechem.2019.09.006
  • Kyriakou, V.; Garagounis, I.; Vourros, A.; Vasileiou, E.; Stoukides, M. An Electrochemical Haber-Bosch Process. Joule 2020, 4, 142–158. doi:10.1016/j.joule.2019.10.006
  • Guo, W.; Zhang, K.; Liang, Z.; Zou, R.; Xu, Q. Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chemical Society reviews 2019, 48, 5658–5716. doi:10.1039/c9cs00159j
  • Chen, A.; Xia, B. Y. Ambient dinitrogen electrocatalytic reduction for ammonia synthesis. Journal of Materials Chemistry A 2019, 7, 23416–23431. doi:10.1039/c9ta05505c
  • John, J.; Lee, D.-K.; Sim. Photocatalytic and electrocatalytic approaches towards atmospheric nitrogen reduction to ammonia under ambient conditions. Nano convergence 2019, 6, 15. doi:10.1186/s40580-019-0182-5
  • Makepeace, J. W.; He, T.; Weidenthaler, C.; Jensen, T. R.; Chang, F.; Vegge, T.; Ngene, P.; Kojima, Y.; de Jongh, P. E.; Chen, P.; David, W. I. F. Reversible ammonia-based and liquid organic hydrogen carriers for high-density hydrogen storage: Recent progress. International Journal of Hydrogen Energy 2019, 44, 7746–7767. doi:10.1016/j.ijhydene.2019.01.144
  • Chen, X.; Zhao, X.; Kong, Z.; Ong, W.-J.; Li, N. Unravelling the electrochemical mechanisms for nitrogen fixation on single transition metal atoms embedded in defective graphitic carbon nitride. Journal of Materials Chemistry A 2018, 6, 21941–21948. doi:10.1039/c8ta06497k
  • Matanovic, I.; Garzon, F. H. Nitrogen electroreduction and hydrogen evolution on cubic molybdenum carbide: a density functional study. Physical chemistry chemical physics : PCCP 2018, 20, 14679–14687. doi:10.1039/c8cp01643g
  • Cui, X.; Tang, C.; Zhang, Q. A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions. Advanced Energy Materials 2018, 8, 1800369. doi:10.1002/aenm.201800369
  • Höskuldsson, Á. B.; Abghoui, Y.; Gunnarsdóttir, A. B.; Skúlason, E. Computational Screening of Rutile Oxides for Electrochemical Ammonia Formation. ACS Sustainable Chemistry & Engineering 2017, 5, 10327–10333. doi:10.1021/acssuschemeng.7b02379
  • Abghoui, Y.; Skúlason, E. Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts. Catalysis Today 2017, 286, 69–77. doi:10.1016/j.cattod.2016.11.047
  • Abghoui, Y.; Skúlason, E. Electrochemical synthesis of ammonia via Mars-van Krevelen mechanism on the (111) facets of group III–VII transition metal mononitrides. Catalysis Today 2017, 286, 78–84. doi:10.1016/j.cattod.2016.06.009

Patents

  • SKULASON EGILL. Electrolytic production of ammonia. US 10344650 B2, July 9, 2019.
  • SKULASON EGILL. ELECTROLYTIC AMMONIA PRODUCTION USING TRANSITION METAL OXIDE CATALYSTS. WO 2019053749 A1, March 21, 2019.
Other Beilstein-Institut Open Science Activities