Core level binding energies of functionalized and defective graphene

Toma Susi, Markus Kaukonen, Paula Havu, Mathias P. Ljungberg, Paola Ayala and Esko I. Kauppinen
Beilstein J. Nanotechnol. 2014, 5, 121–132. https://doi.org/10.3762/bjnano.5.12

Supporting Information

Supporting Information File 1: Mathematica script used for plotting the line shapes shown in Figure 4.
Format: ZIP Size: 203.3 KB Download

Cite the Following Article

Core level binding energies of functionalized and defective graphene
Toma Susi, Markus Kaukonen, Paula Havu, Mathias P. Ljungberg, Paola Ayala and Esko I. Kauppinen
Beilstein J. Nanotechnol. 2014, 5, 121–132. https://doi.org/10.3762/bjnano.5.12

How to Cite

Susi, T.; Kaukonen, M.; Havu, P.; Ljungberg, M. P.; Ayala, P.; Kauppinen, E. I. Beilstein J. Nanotechnol. 2014, 5, 121–132. doi:10.3762/bjnano.5.12

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Vidal, M.; Dehaghani, M. S.; Yoshii, T.; Wakabayashi, K.; Cameán, I.; Barreau, M.; Le Breton, N.; Gerber, I. C.; Puech, P.; Boudalis, A. K.; Blon, T.; Placke, T.; Nishihara, H.; Zafeiratos, S.; Serp, P. Probing Prismatic/Basal Surfaces of Carbon Materials upon Graphitization by Gas Adsorption, TPD, and XPS. The Journal of Physical Chemistry C 2024, 128, 18993–19012. doi:10.1021/acs.jpcc.4c06100
  • Bignardi, L.; Pozzo, M.; Zelenika, A.; Presel, F.; Lacovig, P.; Lizzit, S.; Alfè, D.; Baraldi, A. Determining the atomic coordination number in the structure of β12 borophene on Ag(111) via X-ray photoelectron diffraction analysis. Surfaces and Interfaces 2024, 51, 104791. doi:10.1016/j.surfin.2024.104791
  • Grisan Qiu, Y. Y.; Biasin, P.; Mantegazza, P.; Baronio, S.; Heinrich, M.; Muntwiler, M. K.; Vesselli, E. Seeking borophene on Ni3Al(111): an experimental characterization of boron segregation and oxidation. Journal of Physics: Materials 2024, 7, 25004. doi:10.1088/2515-7639/ad278c
  • Tayyab, S.; Apponi, A.; Betti, M. G.; Blundo, E.; Cavoto, G.; Frisenda, R.; Jiménez-Arévalo, N.; Mariani, C.; Pandolfi, F.; Polimeni, A.; Rago, I.; Ruocco, A.; Sbroscia, M.; Yadav, R. P. Spectromicroscopy Study of Induced Defects in Ion-Bombarded Highly Aligned Carbon Nanotubes. Nanomaterials (Basel, Switzerland) 2023, 14, 77. doi:10.3390/nano14010077
  • Patterer, L.; Ondračka, P.; Bogdanovski, D.; Mráz, S.; Karimi Aghda, S.; Pöllmann, P. J.; Chien, Y.; Schneider, J. M. Correlative Theoretical and Experimental Study of the Polycarbonate | X Interfacial Bond Formation (X = AlN, TiN, (Ti,Al)N) During Magnetron Sputtering. Advanced Materials Interfaces 2023, 10. doi:10.1002/admi.202300215
  • Ito, Y.; Ni, J.; Lee, C.; Gao, X.; Miyahara, Y.; Miyazaki, K.; Abe, T. Correlation between properties of various carbon defects and electrochemical charge carrier storage mechanisms for use in Li- and Na-based rechargeable batteries. Chemical Physics Reviews 2023, 4. doi:10.1063/5.0144995
  • Jeong, H.; Park, S.; Yang, J.; Lee, H.-M.; An, S.; Yamada, Y.; Kim, J. Spectroscopic distinction of carbon nanobelts and nanohoops. Carbon 2023, 201, 829–836. doi:10.1016/j.carbon.2022.09.063
  • Rabchinskii, M. K.; Shnitov, V. V.; Brzhezinskaya, M.; Baidakova, M. V.; Stolyarova, D. Y.; Ryzhkov, S. A.; Saveliev, S. D.; Shvidchenko, A. V.; Nefedov, D. Y.; Antonenko, A. O.; Pavlov, S. V.; Kislenko, V. A.; Kislenko, S. A.; Brunkov, P. N. Manifesting Epoxide and Hydroxyl Groups in XPS Spectra and Valence Band of Graphene Derivatives. Nanomaterials (Basel, Switzerland) 2022, 13, 23. doi:10.3390/nano13010023
  • Gubarev, V.; Krivokorytov, M.; Ramirez Benavides, J. A.; Krivtsun, V.; Ivanov, V.; Medvedev, V.; Pal, A.; Krasnikov, D.; Nasibulin, A. InSn plasma penetration through protective single-walled carbon nanotube-based membranes. Applied Physics Letters 2022, 121. doi:10.1063/5.0097517
  • Mori, K.; Kim, J.; Kubo, S.; Yamada, Y. Effects of molecular shapes, molecular weight, and types of edges on peak positions of C1s X-ray photoelectron spectra of graphene-related materials and model compounds. Journal of Materials Science 2022, 57, 15789–15808. doi:10.1007/s10853-022-07599-6
  • De, S.; Adhikari, A.; Chattopadhyay, D. New Frontiers of Graphene Based Nanohybrids for Energy Harvesting Applications. Current and Future Developments in Nanomaterials and Carbon Nanotubes; BENTHAM SCIENCE PUBLISHERS, 2022; pp 78–103. doi:10.2174/9789815050714122030008
  • Betti, M. G.; Blundo, E.; De Luca, M.; Felici, M.; Frisenda, R.; Ito, Y.; Jeong, S.; Marchiani, D.; Mariani, C.; Polimeni, A.; Sbroscia, M.; Trequattrini, F.; Trotta, R. Homogeneous Spatial Distribution of Deuterium Chemisorbed on Free-Standing Graphene. Nanomaterials (Basel, Switzerland) 2022, 12, 2613. doi:10.3390/nano12152613
  • Bhatt, M. D.; Kim, H.; Kim, G. Various defects in graphene: a review. RSC advances 2022, 12, 21520–21547. doi:10.1039/d2ra01436j
  • Golze, D.; Hirvensalo, M.; Hernández-León, P.; Aarva, A.; Etula, J.; Susi, T.; Rinke, P.; Laurila, T.; Caro, M. A. Accurate Computational Prediction of Core-Electron Binding Energies in Carbon-Based Materials: A Machine-Learning Model Combining Density-Functional Theory and GW. Chemistry of materials : a publication of the American Chemical Society 2022, 34, 6240–6254. doi:10.1021/acs.chemmater.1c04279
  • Sereda, G.; Uddin, M. T.; Wente, J. Computational Exploration of Functional Nanoscale Carbonaceous Materials. Current Nanoscience 2022, 18, 478–486. doi:10.2174/1573413717666210924163449
  • Speranza, G. Characterization of Carbon Nanostructures by Photoelectron Spectroscopies. Materials (Basel, Switzerland) 2022, 15, 4434. doi:10.3390/ma15134434
  • Betti, M. G.; Placidi, E.; Izzo, C.; Blundo, E.; Polimeni, A.; Sbroscia, M.; Avila, J.; Dudin, P.; Hu, K.; Ito, Y.; Prezzi, D.; Bonacci, M.; Molinari, E.; Mariani, C. Gap Opening in Double-Sided Highly Hydrogenated Free-Standing Graphene. Nano letters 2022, 22, 2971–2977. doi:10.1021/acs.nanolett.2c00162
  • Tagami, K.; Nara, J.; Ohno, T.; Usami, M. First-principles study of absolute XPS binding energy with PAW planewave pseudopotential method: application to tungsten disulfides. Japanese Journal of Applied Physics 2022, 61, 22003–022003. doi:10.35848/1347-4065/ac4464
  • Jeong, H.; Park, S.; Yang, J.; Lee, H.-M.; An, S.; Yamada, Y.; Kim, J. Spectroscopic Distinction of Carbon Nanobelts and Nanohoops. SSRN Electronic Journal 2022. doi:10.2139/ssrn.4191318
  • Arif, T.; Wang, G.; Sodhi, R. N.; Colas, G.; Filleter, T. Role of chemical vs. physical interfacial interaction and adsorbed water on the tribology of ultrathin 2D-material/steel interfaces. Tribology International 2021, 163, 107194. doi:10.1016/j.triboint.2021.107194
Other Beilstein-Institut Open Science Activities