Cite the Following Article
Highly NO2 sensitive caesium doped graphene oxide conductometric sensors
Carlo Piloto, Marco Notarianni, Mahnaz Shafiei, Elena Taran, Dilini Galpaya, Cheng Yan and Nunzio Motta
Beilstein J. Nanotechnol. 2014, 5, 1073–1081.
https://doi.org/10.3762/bjnano.5.120
How to Cite
Piloto, C.; Notarianni, M.; Shafiei, M.; Taran, E.; Galpaya, D.; Yan, C.; Motta, N. Beilstein J. Nanotechnol. 2014, 5, 1073–1081. doi:10.3762/bjnano.5.120
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Lee, I.; Kannankutty, K.; He, Z.-F.; Wei, T.-C. Facile, cost-effective NO2 gas sensors based on polymer intercalated graphene/ reduced graphene oxide materials. Journal of the Taiwan Institute of Chemical Engineers 2024, 157, 105405. doi:10.1016/j.jtice.2024.105405
- Patil, S.; Rajkuberan, C.; Sagadevan, S. Recent biomedical advancements in graphene oxide and future perspectives. Journal of Drug Delivery Science and Technology 2023, 86, 104737. doi:10.1016/j.jddst.2023.104737
- Kushwaha, A.; Singh, G.; Sharma, M. Graphene-Based Electrodes for Electrochemical Sensors. Graphene-based Carbocatalysts: Synthesis, Properties and Applications (Volume 2); BENTHAM SCIENCE PUBLISHERS, 2023; pp 168–196. doi:10.2174/9789815136050123020009
- Simon, I.; Haiduk, Y. S.; Mülhaupt, R.; Pankov, V.; Janiak, C. Selected gas response measurements using reduced graphene oxide decorated with nickel nanoparticles. Nano Materials Science 2021, 3, 412–419. doi:10.1016/j.nanoms.2021.03.004
- Li, Q.; Liu, Y.; Chen, D.; Miao, J.; Zhi, X.; Deng, S.; Lin, S.; Jin, H.; Cui, D. Nitrogen Dioxide Gas Sensor Based on Ag-Doped Graphene: A First-Principle Study. Chemosensors 2021, 9, 227. doi:10.3390/chemosensors9080227
- Zhu, J.; Cho, M.; Li, Y.; He, T.; Ahn, J.; Park, J.; Ren, T.-L.; Lee, C.; Park, I. Machine learning-enabled textile-based graphene gas sensing with energy harvesting-assisted IoT application. Nano Energy 2021, 86, 106035. doi:10.1016/j.nanoen.2021.106035
- Thangamani, G.; Deshmukh, K.; Kovářík, T.; Nambiraj, N.; Ponnamma, D.; Sadasivuni, K. K.; Khalil, H. P. S. A.; Pasha, S. K. K. Graphene oxide nanocomposites based room temperature gas sensors: A review. Chemosphere 2021, 280, 130641. doi:10.1016/j.chemosphere.2021.130641
- Hashtroudi, H.; Kumar, R.; Savu, R.; Moshkalev, S. A.; Kawamura, G.; Matsuda, A.; Shafiei, M. Hydrogen gas sensing properties of microwave-assisted 2D Hybrid Pd/rGO: Effect of temperature, humidity and UV illumination. International Journal of Hydrogen Energy 2021, 46, 7653–7665. doi:10.1016/j.ijhydene.2020.11.268
- Hashtroudi, H.; Mackinnon, I. D.; Shafiei, M. Emerging 2D hybrid nanomaterials: towards enhanced sensitive and selective conductometric gas sensors at room temperature. Journal of Materials Chemistry C 2020, 8, 13108–13126. doi:10.1039/d0tc01968b
- Grosdidier, B.; Sulaiman, N.; Osman, S.; Abdellah, A. B. Metal–non-metal transition of expanded liquid Caesium. Philosophical Magazine 2020, 100, 3005–3022. doi:10.1080/14786435.2020.1799100
- Li, Q.; Chen, D.; Miao, J.; Lin, S.; Yu, Z.; Han, Y.; Yang, Z.; Zhi, X.; Cui, D.; An, Z. Ag-Modified 3D Reduced Graphene Oxide Aerogel-Based Sensor with an Embedded Microheater for a Fast Response and High-Sensitive Detection of NO2. ACS applied materials & interfaces 2020, 12, 25243–25252. doi:10.1021/acsami.9b22098
- Kumar, R.; Kumar, A.; Singh, R.; Kashyap, R.; Kumar, R.; Kumar, D.; Kumar, M. Selective room temperature ammonia gas detection using 2-amino pyridine functionalized graphene oxide. Materials Science in Semiconductor Processing 2020, 110, 104920. doi:10.1016/j.mssp.2020.104920
- Deokar, G.; Casanova-Chafer, J.; Rajput, N. S.; Aubry, C.; Llobet, E.; Jouiad, M.; Da Costa, P. M. F. J. Wafer-scale few-layer graphene growth on Cu/Ni films for gas sensing applications. Sensors and Actuators B: Chemical 2020, 305, 127458. doi:10.1016/j.snb.2019.127458
- Zhu, J.; Cho, M.; Li, Y.; Cho, I.; Suh, J.-H.; Del Orbe, D.; Jeong, Y.; Ren, T.-L.; Park, I. Biomimetic Turbinate-like Artificial Nose for Hydrogen Detection Based on 3D Porous Laser-Induced Graphene. ACS applied materials & interfaces 2019, 11, 24386–24394. doi:10.1021/acsami.9b04495
- Fei, H.; Wu, G.; Cheng, W.-Y.; Yan, W.; Xu, H.; Zhang, D.; Zhao, Y.; Lv, Y.; Chen, Y.; Zhang, L.; Coileáin, C. Ó.; Heng, C. L.; Chang, C.-R.; Wu, H.-C. Enhanced NO2 Sensing at Room Temperature with Graphene via Monodisperse Polystyrene Bead Decoration. ACS omega 2019, 4, 3812–3819. doi:10.1021/acsomega.8b03540
- Shafiei, M.; Bradford, J.; Khan, H.; Piloto, C.; Wlodarski, W.; Li, Y.; Motta, N. Low-operating temperature NO2 gas sensors based on hybrid two-dimensional SnS2-reduced graphene oxide. Applied Surface Science 2018, 462, 330–336. doi:10.1016/j.apsusc.2018.08.115
- Shojaee, M.; Nasresfahani, S.; Dordane, M.; Sheikhi, M. H. Fully integrated wearable humidity sensor based on hydrothermally synthesized partially reduced graphene oxide. Sensors and Actuators A: Physical 2018, 279, 448–456. doi:10.1016/j.sna.2018.06.052
- Broza, Y. Y.; Vishinkin, R.; Barash, O.; Nakhleh, M. K.; Haick, H. Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chemical Society reviews 2018, 47, 4781–4859. doi:10.1039/c8cs00317c
- Zhang, X.; Zhong, H.; Xu, L.; Wang, S.; Chi, H.; Pan, Q.-J.; Zhang, G. Fabrication of Co3O4/PEI-GO composites for gas-sensing applications at room temperature. Materials Research Bulletin 2018, 102, 108–115. doi:10.1016/j.materresbull.2018.02.025
- Piloto, C.; Shafiei, M.; Khan, H.; Gupta, B.; Tesfamichael, T.; Motta, N. Sensing performance of reduced graphene oxide-Fe doped WO3 hybrids to NO2 and humidity at room temperature. Applied Surface Science 2018, 434, 126–133. doi:10.1016/j.apsusc.2017.10.152