Dry friction of microstructured polymer surfaces inspired by snake skin

Martina J. Baum, Lars Heepe, Elena Fadeeva and Stanislav N. Gorb
Beilstein J. Nanotechnol. 2014, 5, 1091–1103. https://doi.org/10.3762/bjnano.5.122

Cite the Following Article

Dry friction of microstructured polymer surfaces inspired by snake skin
Martina J. Baum, Lars Heepe, Elena Fadeeva and Stanislav N. Gorb
Beilstein J. Nanotechnol. 2014, 5, 1091–1103. https://doi.org/10.3762/bjnano.5.122

How to Cite

Baum, M. J.; Heepe, L.; Fadeeva, E.; Gorb, S. N. Beilstein J. Nanotechnol. 2014, 5, 1091–1103. doi:10.3762/bjnano.5.122

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Berardo, A.; Borasso, M.; Gallus, E.; Pugno, N. M. Finite Element Simulations and Statistical Analysis for the Tribological Design of Mutually Textured Surfaces and Related Experimental Validation. Journal of Tribology 2024, 147, 1–19. doi:10.1115/1.4066501
  • Shi, G.; Wang, J.; Dong, Y.; Hu, S.; Zheng, L.; Ren, L. Effect of Surface Morphology and Internal Structure on the Tribological Behaviors of Snake Scales from Dinodon rufozonatum. Biomimetics 2024, 9, 617. doi:10.3390/biomimetics9100617
  • Tsujioka, K.; Koda, A.; Hirai, Y.; Shimomura, M.; Matsuo, Y. Friction Reduction Effect Caused by Microcontact and Load Dispersion on the Moth‐Eye Structure. Advanced Engineering Materials 2024, 26. doi:10.1002/adem.202401405
  • Guo, W.; Guan, T.; Wang, X.; Yu, T.; Liu, J. Two-step printing bionic self-lubricating composite surface fabricated by selective laser melting ink-printed metal nanoparticles. Surfaces and Interfaces 2024, 51, 104802. doi:10.1016/j.surfin.2024.104802
  • Bergmann, A.; Sumpf, J.; Dallinger, N.; Moneke, M.; Golder, M. Semi-analytical calculation model for friction of polymers on the example of POM ∣ PE-UHMW and steel ∣ PE-UHMW. Friction 2024, 12, 2355–2369. doi:10.1007/s40544-024-0887-2
  • Soni, D. L.; Jagadish; Neigapula, V. S. N. Tool surface texturing in machining performance: state of art and recent developments. International Journal on Interactive Design and Manufacturing (IJIDeM) 2024. doi:10.1007/s12008-024-01861-8
  • Chitikena, H.; Mohammadi, A.; Sanfilippo, F.; Poursina, M. Anisotropic Friction Skin for Holonomic Snake Robot Mobility*. In 2024 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO), IEEE, 2024; pp 222–227. doi:10.1109/arso60199.2024.10557914
  • Surfaces and Their Importance in Function. Advances in Chemical and Materials Engineering; IGI Global, 2024; pp 111–142. doi:10.4018/978-1-6684-5638-5.ch004
  • Aymard, A.; Delplanque, E.; Dalmas, D.; Scheibert, J. Designing metainterfaces with specified friction laws. Science (New York, N.Y.) 2024, 383, 200–204. doi:10.1126/science.adk4234
  • Tsujioka, K.; Hirai, Y.; Shimomura, M.; Matsuo, Y. Friction-reduction effect of the hierarchical surface microstructure of carrion beetle by controlling the real contact area. Nanoscale 2024. doi:10.1039/d4nr02892a
  • Evangelista, I.; Wencel, D.; Beguin, S.; Zhang, N.; Gilchrist, M. D. Influence of Surface Texturing on the Dry Tribological Properties of Polymers in Medical Devices. Polymers 2023, 15, 2858. doi:10.3390/polym15132858
  • Tsibidis, G. D.; Stratakis, E. Ultrafast Laser Biomimetic Micro-/Nanostructuring. Springer Series in Optical Sciences; Springer International Publishing, 2023; pp 921–949. doi:10.1007/978-3-031-14752-4_25
  • Guo, W.; Guan, T.; Wang, X.; Liu, J. Two-Step Printing Biomimetic Self-Lubricating Composite Surface Using Selective Laser Melting of Ink-Printed Metal Nanoparticles. Elsevier BV 2023. doi:10.2139/ssrn.4635147
  • Zhao, J.; Ji, K.; Chen, Q.; Khan, M. N.; Tu, C.; Ma, Z.; Wu, J.; Chen, J.; Dai, Z. Resistance reduction of patterned surface inspired by cuticle structure of Achalinus spinalis. Friction 2022, 11, 1359–1370. doi:10.1007/s40544-022-0694-6
  • Asawalertsak, N.; Heims, F.; Kovalev, A.; Gorb, S. N.; Jørgensen, J.; Manoonpong, P. Frictional Anisotropic Locomotion and Adaptive Neural Control for a Soft Crawling Robot. Soft robotics 2022, 10, 545–555. doi:10.1089/soro.2022.0004
  • Koplin, C.; Weißer, D. F.; Fromm, A.; Deckert, M. H. Stiction and Friction of Nano- and Microtextured Liquid Silicon Rubber Surface Formed by Injection Molding. Applied Mechanics 2022, 3, 1270–1287. doi:10.3390/applmech3040073
  • Liu, Y.; Zhang, H.; Dai, S.; Dong, G. Designing a bioinspired scaly textured surface for improving the tribological behaviors of starved lubrication. Tribology International 2022, 173, 107594. doi:10.1016/j.triboint.2022.107594
  • Muehlberger, M. Nanoimprinting of Biomimetic Nanostructures. Nanomanufacturing 2022, 2, 17–40. doi:10.3390/nanomanufacturing2010002
  • Soni, D. L.; Jagadish. Nature-inspired texture pattern for cutting tool tribological surface modification: A state of art. Materials Today: Proceedings 2022, 60, 1353–1357. doi:10.1016/j.matpr.2021.10.180
  • Hu, S.; Shi, G.; Guo, Q.; Zheng, L.; Ren, L.; Su, C. The Tribological Adaptability for Ventral Scales of Dinodon rufozonatum in Dry/Wet/Rough Environments. Coatings 2021, 12, 20. doi:10.3390/coatings12010020
Other Beilstein-Institut Open Science Activities