Nanocavity crossbar arrays for parallel electrochemical sensing on a chip

Enno Kätelhön, Dirk Mayer, Marko Banzet, Andreas Offenhäusser and Bernhard Wolfrum
Beilstein J. Nanotechnol. 2014, 5, 1137–1143. https://doi.org/10.3762/bjnano.5.124

Cite the Following Article

Nanocavity crossbar arrays for parallel electrochemical sensing on a chip
Enno Kätelhön, Dirk Mayer, Marko Banzet, Andreas Offenhäusser and Bernhard Wolfrum
Beilstein J. Nanotechnol. 2014, 5, 1137–1143. https://doi.org/10.3762/bjnano.5.124

How to Cite

Kätelhön, E.; Mayer, D.; Banzet, M.; Offenhäusser, A.; Wolfrum, B. Beilstein J. Nanotechnol. 2014, 5, 1137–1143. doi:10.3762/bjnano.5.124

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Costa, J. N. Y.; Pimentel, G. J. C.; Poker, J. A.; Merces, L.; Paschoalino, W. J.; Vieira, L. C. S.; Castro, A. C. H.; Alves, W. A.; Ayres, L. B.; Kubota, L. T.; Santhiago, M.; Garcia, C. D.; Piazzetta, M. H. O.; Gobbi, A. L.; Shimizu, F. M.; Lima, R. S. Single-Response Duplexing of Electrochemical Label-Free Biosensor from the Same Tag. Advanced healthcare materials 2024, 13, e2303509. doi:10.1002/adhm.202303509
  • Mutalib, N. A. A.; Hsueh, A.-J.; Deng, Y.; Suzuki, M.; Wu, C.-C.; Shirato, Y.; Suzuki, H. Potential Modulation and Control of Redox Reactions at Bipolar Electrodes Using an Ion-Selective Membrane. Journal of The Electrochemical Society 2024, 171, 27502–027502. doi:10.1149/1945-7111/ad1c5f
  • Janićijević, Ž.; Nguyen-Le, T.-A.; Alsadig, A.; Cela, I.; Žilėnaite, R.; Tonmoy, T. H.; Kubeil, M.; Bachmann, M.; Baraban, L. Methods gold standard in clinic millifluidics multiplexed extended gate field-effect transistor biosensor with gold nanoantennae as signal amplifiers. Biosensors & bioelectronics 2023, 241, 115701. doi:10.1016/j.bios.2023.115701
  • Gutiérrez-Capitán, M.; Baldi, A.; Merlos, Á.; Fernández-Sánchez, C. Array of individually addressable two-electrode electrochemical cells sharing a single counter/reference electrode for multiplexed enzyme activity measurements. Biosensors & bioelectronics 2022, 201, 113952. doi:10.1016/j.bios.2021.113952
  • Abe, H.; Iwama, T.; Guo, Y. Light in Electrochemistry. Electrochem 2021, 2, 472–489. doi:10.3390/electrochem2030031
  • Sassa, F.; Biswas, G. C.; Suzuki, H. Microfabricated Electrochemical Sensing Devices. Lab on a chip 2020, 20, 1358–1389. doi:10.1039/c9lc01112a
  • Abe, H.; Yabu, H.; Kunikata, R.; Suda, A.; Matsudaira, M.; Matsue, T. Redox cycling-based electrochemical CMOS imaging sensor for real time and selective imaging of redox analytes. Sensors and Actuators B: Chemical 2020, 304, 127245. doi:10.1016/j.snb.2019.127245
  • Song, Y.; Xu, T.; Xiu, J.; Zhang, X. Mini-pillar microarray for individually electrochemical sensing in microdroplets. Biosensors & bioelectronics 2019, 149, 111845. doi:10.1016/j.bios.2019.111845
  • Spotts, I. Ph.D. Thesis, Aug 1, 2019.
  • Hiramoto, K.; Ino, K.; Nashimoto, Y.; Ito, K.; Shiku, H. Electric and Electrochemical Microfluidic Devices for Cell Analysis. Frontiers in chemistry 2019, 7, 396. doi:10.3389/fchem.2019.00396
  • Ino, K.; Shiku, H.; Matsue, T. Bioelectrochemical applications of microelectrode arrays in cell analysis and engineering. Current Opinion in Electrochemistry 2017, 5, 146–151. doi:10.1016/j.coelec.2017.08.004
  • Zhang, H.; Oellers, T.; Feng, W.; Abdulazim, T.; Saw, E. N.; Ludwig, A.; Levkin, P. A.; Plumeré, N. High-Density Droplet Microarray of Individually Addressable Electrochemical Cells. Analytical chemistry 2017, 89, 5832–5839. doi:10.1021/acs.analchem.7b00008
  • Hammond, J. L.; Rosamond, M. C.; Sivaraya, S.; Marken, F.; Estrela, P. Fabrication of a Horizontal and a Vertical Large Surface Area Nanogap Electrochemical Sensor. Sensors (Basel, Switzerland) 2016, 16, 2128. doi:10.3390/s16122128
  • Wolfrum, B.; Kätelhön, E.; Yakushenko, A.; Krause, K. J.; Adly, N.; Hüske, M.; Rinklin, P. Nanoscale Electrochemical Sensor Arrays: Redox Cycling Amplification in Dual-Electrode Systems. Accounts of chemical research 2016, 49, 2031–2040. doi:10.1021/acs.accounts.6b00333
  • Alayo, N.; Fernández-Sánchez, C.; Baldi, A.; Esquivel, J. P.; Borrisé, X.; Pérez-Murano, F. Gold interdigitated nanoelectrodes as a sensitive analytical tool for selective detection of electroactive species via redox cycling. Microchimica Acta 2016, 183, 1633–1639. doi:10.1007/s00604-016-1792-9
  • Kanno, Y.; Ino, K.; Shiku, H.; Matsue, T. A local redox cycling-based electrochemical chip device with nanocavities for multi-electrochemical evaluation of embryoid bodies. Lab on a chip 2015, 15, 4404–4414. doi:10.1039/c5lc01016k
  • Kanno, Y.; Ino, K.; Sakamoto, C.; Inoue, K. Y.; Matsudaira, M.; Suda, A.; Kunikata, R.; Ishikawa, T.; Abe, H.; Shiku, H.; Matsue, T. Potentiometric bioimaging with a large-scale integration (LSI)-based electrochemical device for detection of enzyme activity. Biosensors & bioelectronics 2015, 77, 709–714. doi:10.1016/j.bios.2015.10.021
Other Beilstein-Institut Open Science Activities