Constant-distance mode SECM as a tool to visualize local electrocatalytic activity of oxygen reduction catalysts

Michaela Nebel, Thomas Erichsen and Wolfgang Schuhmann
Beilstein J. Nanotechnol. 2014, 5, 141–151. https://doi.org/10.3762/bjnano.5.14

Cite the Following Article

Constant-distance mode SECM as a tool to visualize local electrocatalytic activity of oxygen reduction catalysts
Michaela Nebel, Thomas Erichsen and Wolfgang Schuhmann
Beilstein J. Nanotechnol. 2014, 5, 141–151. https://doi.org/10.3762/bjnano.5.14

How to Cite

Nebel, M.; Erichsen, T.; Schuhmann, W. Beilstein J. Nanotechnol. 2014, 5, 141–151. doi:10.3762/bjnano.5.14

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Raju, A. R.; Schougaard, S. B.; Mauzeroll, J. Current trends in SECM for energy storage devices: Reaching the microstructure level to tune devices and performance. Current Opinion in Electrochemistry 2024, 45, 101522. doi:10.1016/j.coelec.2024.101522
  • Park, J.; Lim, J. H.; Kang, J.-H.; Lim, J.; Jang, H. W.; Shin, H.; Park, S. H. A review of understanding electrocatalytic reactions in energy conversion and energy storage systems via scanning electrochemical microscopy. Journal of Energy Chemistry 2024, 91, 155–177. doi:10.1016/j.jechem.2023.12.015
  • Poderyte, M.; Ramanavicius, A.; Valiūnienė, A. Exploring the Living Cell: Applications and Advances of Scanning Electrochemical Microscopy. Critical reviews in analytical chemistry 2024, 1–12. doi:10.1080/10408347.2024.2328135
  • Santana Santos, C.; Jaato, B. N.; Sanjuán, I.; Schuhmann, W.; Andronescu, C. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chemical reviews 2023, 123, 4972–5019. doi:10.1021/acs.chemrev.2c00766
  • Zhao, Y.; Adams, J. S.; Baby, A.; Kromer, M. L.; Flaherty, D. W.; Rodríguez-López, J. Electrochemical Screening of Au/Pt Catalysts for the Thermocatalytic Synthesis of Hydrogen Peroxide Based on Their Oxygen Reduction and Hydrogen Oxidation Activities Probed via Voltammetric Scanning Electrochemical Microscopy. ACS Sustainable Chemistry & Engineering 2022, 10, 17207–17220. doi:10.1021/acssuschemeng.2c05120
  • Makulavičius, M.; Dzedzickis, A.; Bučinskas, V.; Subaciute-Zemaitiene, J.; Morkvenaite-Vilkonciene, I. Theoretical Simulations of Scanning Electrochemical Microscope Positioning System. Advances in Intelligent Systems and Computing; Springer International Publishing, 2022; pp 183–191. doi:10.1007/978-3-031-03502-9_19
  • Choi, M.-h.; Leasor, C. W.; Baker, L. A. Analytical Applications of Scanning Ion Conductance Microscopy: Measuring Ions and Electrons. Bioanalytical Reviews; Springer International Publishing, 2021; pp 73–121. doi:10.1007/11663_2021_9
  • Dieckhöfer, S.; Öhl, D.; Junqueira, J. R. C.; Quast, T.; Turek, T.; Schuhmann, W. Probing the local reaction environment during high turnover carbon dioxide reduction with Ag-based gas diffusion electrodes. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27, 5906–5912. doi:10.1002/chem.202100387
  • Mahankali, K.; Thangavel, N. K.; Arava, L. M. R. In Situ Electrochemical Mapping of Lithium-Sulfur Battery Interfaces Using AFM-SECM. Nano letters 2019, 19, 5229–5236. doi:10.1021/acs.nanolett.9b01636
  • Dhillon, S.; Goswami, N.; Kant, R. Theory for local EIS at rough electrode under diffusion controlled charge transfer: Onset of whiskers and dendrites. Journal of Electroanalytical Chemistry 2019, 840, 193–207. doi:10.1016/j.jelechem.2019.03.019
  • Claudio-Cintrón, M. A.; Rodríguez-López, J. Scanning electrochemical microscopy with conducting polymer probes: Validation and applications. Analytica chimica acta 2019, 1069, 36–46. doi:10.1016/j.aca.2019.04.022
  • Giron, R. G. P.; Chen, X.; La Plante, E. C.; Gussev, M. N.; Leonard, K. J.; Sant, G. Revealing How Alkali Cations Affect the Surface Reactivity of Stainless Steel in Alkaline Aqueous Environments. ACS omega 2018, 3, 14680–14688. doi:10.1021/acsomega.8b02227
  • Botz, A.; Clausmeyer, J.; Öhl, D.; Tarnev, T.; Franzen, D.; Turek, T.; Schuhmann, W. Die lokalen Aktivitäten von Hydroxidionen und Wasser bestimmen die Funktionsweise von auf Silber basierenden Sauerstoffverzehrkathoden. Angewandte Chemie 2018, 130, 12465–12469. doi:10.1002/ange.201807798
  • Botz, A.; Clausmeyer, J.; Öhl, D.; Tarnev, T.; Franzen, D.; Turek, T.; Schuhmann, W. Local Activities of Hydroxide and Water Determine the Operation of Silver-Based Oxygen Depolarized Cathodes. Angewandte Chemie (International ed. in English) 2018, 57, 12285–12289. doi:10.1002/anie.201807798
  • Haensch, M.; Behnken, J.; Balboa, L.; Dyck, A.; Wittstock, G. Redox titration of gold and platinum surface oxides at porous microelectrodes. Physical chemistry chemical physics : PCCP 2017, 19, 22915–22925. doi:10.1039/c7cp04589a
  • Polcari, D.; Dauphin-Ducharme, P.; Mauzeroll, J. Scanning Electrochemical Microscopy: A Comprehensive Review of Experimental Parameters from 1989 to 2015. Chemical reviews 2016, 116, 13234–13278. doi:10.1021/acs.chemrev.6b00067
  • Ino, K.; Yamada, Y.; Kanno, Y.; Imai, S.; Shiku, H.; Matsue, T. Molecular electrochemical switching element based on diffusive molecular competition for multipoint electrochemical detection of respiration activity of cell aggregates. Sensors and Actuators B: Chemical 2016, 234, 201–208. doi:10.1016/j.snb.2016.04.160
  • Masa, J.; Ventosa, E.; Schuhmann, W. Application of Scanning Electrochemical Microscopy (SECM) to Study Electrocatalysis of Oxygen Reduction by MN4-Macrocyclic Complexes. Electrochemistry of N4 Macrocyclic Metal Complexes; Springer International Publishing, 2016; pp 103–141. doi:10.1007/978-3-319-31172-2_4
  • Filice, F. P.; Li, M. S. M.; Henderson, J. D.; Ding, Z. Mapping Cd²⁺-induced membrane permeability changes of single live cells by means of scanning electrochemical microscopy. Analytica chimica acta 2016, 908, 85–94. doi:10.1016/j.aca.2015.12.027
  • Botz, A.; Nebel, M.; Rincón, R. A.; Ventosa, E.; Schuhmann, W. Onset potential determination at gas-evolving catalysts by means of constant-distance mode positioning of nanoelectrodes. Electrochimica Acta 2015, 179, 38–44. doi:10.1016/j.electacta.2015.04.145
Other Beilstein-Institut Open Science Activities