Review of nanostructured devices for thermoelectric applications

Giovanni Pennelli
Beilstein J. Nanotechnol. 2014, 5, 1268–1284. https://doi.org/10.3762/bjnano.5.141

Cite the Following Article

Review of nanostructured devices for thermoelectric applications
Giovanni Pennelli
Beilstein J. Nanotechnol. 2014, 5, 1268–1284. https://doi.org/10.3762/bjnano.5.141

How to Cite

Pennelli, G. Beilstein J. Nanotechnol. 2014, 5, 1268–1284. doi:10.3762/bjnano.5.141

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zhu, X.; Salhani, C.; Etesse, G.; Nagai, N.; Bescond, M.; Carosella, F.; Ferreira, R.; Bastard, G.; Hirakawa, K. Electron cooling behavior in cascading semiconductor double-quantum-well structures. Physical Review Applied 2024, 22. doi:10.1103/physrevapplied.22.034012
  • Xu, Z.; Lin, S.; Yin, Y.; Gu, X. Synergy between gelatin hydrogels and electrodes for adjustable and thermally stable ionic thermoelectric supercapacitors. Chemical Engineering Journal 2024, 493, 152734. doi:10.1016/j.cej.2024.152734
  • Zhu, C.; Ekinci, H.; Pan, A.; Cui, B.; Zhu, X. Electron beam lithography on nonplanar and irregular surfaces. Microsystems & nanoengineering 2024, 10, 52. doi:10.1038/s41378-024-00682-9
  • Kim, C.; Han, S.; Kim, T.; Lee, S. Implantable pH Sensing System Using Vertically Stacked Silicon Nanowire Arrays and Body Channel Communication for Gastroesophageal Reflux Monitoring. Sensors (Basel, Switzerland) 2024, 24, 861. doi:10.3390/s24030861
  • Yoo, H.; Kim, H.; Kwak, H.-T.; Choi, M.; Oh, K.; Kim, Y.; Kim, K. Y.; Lee, S.; Kong, B. D.; Park, J. H.; Baek, C.-K. Enhanced thermoelectric figure of merit in highly-doped silicon nanowires via a corrugated surface modulation. Nano Energy 2023, 118, 108996. doi:10.1016/j.nanoen.2023.108996
  • Ge, C.; Xu, D.; Qian, Y.; Du, H.; Gao, C.; Shen, Z.; Sun, Z.; Fang, J. Carbon materials for hybrid evaporation-induced electricity generation systems. Green Chemistry 2023, 25, 7470–7484. doi:10.1039/d3gc02805d
  • Huang, M.; Zhai, P.; Morozov, S. I.; Goddard, W. A.; Li, G.; Zhang, Q. Engineering twin boundaries for enhancing strength and ductility of thermoelectric semiconductor PbTe. Journal of Alloys and Compounds 2023, 959, 170429. doi:10.1016/j.jallcom.2023.170429
  • Qiu, G.; Li, J.; Ling, Y.; Dong, G.; Feng, J.; Zhang, P.; Liu, R. Carrier concentration and orientation optimization for high performance (Sb,Bi)2Te3 thermoelectric films via magnetron co-sputtering. Journal of Alloys and Compounds 2023, 950, 169916. doi:10.1016/j.jallcom.2023.169916
  • Chen, K.; Wang, L.; Luo, Z.; Xu, X.; Li, Y.; Liu, S.; Zhao, Q. Flexible Thermoelectrics Based on Plastic Inorganic Semiconductors. Advanced Materials Technologies 2023, 8. doi:10.1002/admt.202300189
  • Paghi, A.; Mariani, S.; Barillaro, G. 1D and 2D Field Effect Transistors in Gas Sensing: A Comprehensive Review. Small (Weinheim an der Bergstrasse, Germany) 2023, 19, e2206100. doi:10.1002/smll.202206100
  • Wang, S.; Chen, Q.; Hao, Q. Extension of the two-layer model to heat transfer coefficient predictions of nanoporous Si thin films. Applied Physics Letters 2022, 121. doi:10.1063/5.0099312
  • Fu, T.; Du, J.; Su, S.; Su, G.; Chen, J. The optimum configuration design of a nanostructured thermoelectric device with resonance tunneling. Physica Scripta 2022, 97, 55701–055701. doi:10.1088/1402-4896/ac5e5a
  • Anwar, M. S.; Bukhari, S. Z. A.; Ha, J.; Lee, J.; Song, I.; Kim, Y. Controlling the electrical resistivity of porous silicon carbide ceramics and their applications: A review. International Journal of Applied Ceramic Technology 2022, 19, 1814–1840. doi:10.1111/ijac.14034
  • Bescond, M.; Dangoisse, G.; Zhu, X.; Salhani, C.; Hirakawa, K. Comprehensive Analysis of Electron Evaporative Cooling in Double-Barrier Semiconductor Heterostructures. Physical Review Applied 2022, 17. doi:10.1103/physrevapplied.17.014001
  • Feng, S.-P.; Ni, M.; Cheng, C.; Wang, S. Liquid-based electrochemical systems for the conversion of heat to electricity. Low-Grade Thermal Energy Harvesting; Elsevier, 2022; pp 109–140. doi:10.1016/b978-0-12-823690-1.00004-6
  • Karimi, M.; Mehrpooya, M.; pourfayaz, F. Proposal and investigation of a novel hybrid hydrogen production and liquefaction process using solid oxide electrolyzer, solar energy, and thermoelectric generator. Journal of Cleaner Production 2022, 331, 130001. doi:10.1016/j.jclepro.2021.130001
  • Zhu, X.; Bescond, M.; Onoue, T.; Bastard, G.; Carosella, F.; Ferreira, R.; Nagai, N.; Hirakawa, K. Electron Transport in Double-Barrier Semiconductor Heterostructures for Thermionic Cooling. Physical Review Applied 2021, 16. doi:10.1103/physrevapplied.16.064017
  • Aridi, R.; Faraj, J.; Ali, S.; Lemenand, T.; Khaled, M. Thermoelectric Power Generators: State-of-the-Art, Heat Recovery Method, and Challenges. Electricity 2021, 2, 359–386. doi:10.3390/electricity2030022
  • Pennelli, G.; Dimaggio, E.; Masci, A. Silicon Nanowires: A Breakthrough for Thermoelectric Applications. Materials (Basel, Switzerland) 2021, 14, 5305. doi:10.3390/ma14185305
  • Cassinelli, M.; Cimò, S.; Biskup, T.; Jiao, X.; Luzio, A.; McNeill, C. R.; Noh, Y.-Y.; Kim, Y.-H.; Bertarelli, C.; Caironi, M. Enhanced N-Type Doping of a Naphthalene Diimide Based Copolymer by Modification of the Donor Unit. Advanced Electronic Materials 2021, 7, 2100407. doi:10.1002/aelm.202100407

Patents

  • HUANG BAOLING; ZHANG PENG; LI DEZHAO. Thermal radiation microsensor comprising thermoelectric micro pillars. US 9978926 B2, May 22, 2018.
Other Beilstein-Institut Open Science Activities