Liquid fuel cells

Grigorii L. Soloveichik
Beilstein J. Nanotechnol. 2014, 5, 1399–1418. https://doi.org/10.3762/bjnano.5.153

Cite the Following Article

Liquid fuel cells
Grigorii L. Soloveichik
Beilstein J. Nanotechnol. 2014, 5, 1399–1418. https://doi.org/10.3762/bjnano.5.153

How to Cite

Soloveichik, G. L. Beilstein J. Nanotechnol. 2014, 5, 1399–1418. doi:10.3762/bjnano.5.153

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Singh, S.; Mukhejee, S.; Dutta, A.; Saha, S.; Bose, M.; Saha, P.; Basak, S. Development of Pluri-Metallic Electrocatalysts for Methanol Electro-Oxidation in Low Temperature Fuel Cell. Lecture Notes in Mechanical Engineering; Springer Nature Singapore, 2024; pp 359–372. doi:10.1007/978-981-97-7308-4_26
  • Santos, D. S.; Trench, A. B.; Costa, I. M.; Santos, M. C.; Eguiluz, K. I.; Salazar-Banda, G. R. Influence of different morphologies on the catalytic activity of Pt-Pd nanostructures for methanol oxidation. Electrochimica Acta 2024, 508, 145241. doi:10.1016/j.electacta.2024.145241
  • Chen, H.-S.; Sharma, K.; Cao, J.; Yik, E.; Muradov, N.; Yelvington, P. Electrolysis of low-carbon methanol for point-of-use hydrogen generation: Opportunities and challenges for the direct use of unrefined feedstocks. International Journal of Hydrogen Energy 2024, 90, 680–689. doi:10.1016/j.ijhydene.2024.09.330
  • Kaya, S.; Caglar, A.; Kivrak, H. Enhanced performance of CNT supported bimetallic PdM (M=Cr, Ta, Bi, Hf) catalysts as anode electrode for ammonia borane electrooxidation. Process Safety and Environmental Protection 2024, 191, 1896–1904. doi:10.1016/j.psep.2024.09.080
  • Lyssenko, S.; Kashyap, D.; Teller, H.; Gebru, M. G.; Schechter, A. Online FTIR and Mass Spectrometry Study of Direct Methyl Formate Electro-oxidation for Fuel-Cells Application. Energy & Fuels 2024, 38, 19847–19859. doi:10.1021/acs.energyfuels.4c02718
  • Selvarani, V.; Kiruthika, S.; Jayaprakash, P.; Muthukumaran, B. Enhanced ethylene glycol oxidation in membraneless fuel cells: Comparative analysis of nickel alloy nanocatalysts. International Journal of Hydrogen Energy 2024, 77, 441–449. doi:10.1016/j.ijhydene.2024.06.143
  • Guo, Y.; Hu, Z.; Cao, Y.; Tan, Q.; Yang, D.; Che, Y.; Zhang, C.; Ming, P.; Xiao, Q. Boosting borohydride oxidation kinetics by manipulating hydrogen evolution and oxidation through octahedral Pt–Ni/C for high-performance direct borohydride fuel cells. Journal of Power Sources 2024, 612, 234786. doi:10.1016/j.jpowsour.2024.234786
  • Mujtaba, J.; Kuzin, A.; Chen, G.; Zhu, F.; Fedorov, F. S.; Mohan, B.; Huang, G.; Tolstoy, V.; Kovalyuk, V.; Goltsman, G. N.; Gorin, D. A.; Nasibulin, A. G.; Zhao, S.; Solovev, A. A.; Mei, Y. Synergistic Integration of Hydrogen Peroxide Powered Valveless Micropumps and Membraneless Fuel Cells: A Comprehensive Review. Advanced Materials Technologies 2024, 9. doi:10.1002/admt.202302052
  • Guo, Y.; Cao, Y.; Tan, Q.; Yang, D.; Che, Y.; Zhang, C.; Ming, P.; Xiao, Q. Investigation of non-precious metal cathode catalysts for direct borohydride fuel cells. RSC advances 2024, 14, 19636–19647. doi:10.1039/d4ra02767a
  • Belkoufa, I.; Misski, B.; Alaoui-Belghiti, A.; Mouyane, M.; Houivet, D.; Laasri, S.; Hlil, E.; Hajjaji, A. Role of Mg, Ca, and Mo in NaBH4 systems for hydrogen storage applications: Ab initio study. Computational Materials Science 2024, 242, 113090. doi:10.1016/j.commatsci.2024.113090
  • Arjona, N.; Arredondo-Espínola, A.; Álvarez-Contreras, L.; Guerra-Balcázar, M. Single-Atom Catalysts for Alcohol Oxidation Reactions. Atomically Precise Electrocatalysts for Electrochemical Energy Applications; Springer Nature Switzerland, 2024; pp 435–452. doi:10.1007/978-3-031-54622-8_24
  • Liebl, L.; Bardow, A.; Roskosch, D. Indirect Electrochemical Cooling: Model-Based Performance Analysis and Working Fluid Selection. Industrial & engineering chemistry research 2024, 63, 1055–1065. doi:10.1021/acs.iecr.3c03582
  • Phachaipum, S.; Prapainainar, C.; Prapainainar, P. Proton-exchange polymer composite membrane of Nafion and microcrystalline cellulose for performance improvement of direct glycerol fuel cell. International Journal of Hydrogen Energy 2024, 52, 1111–1120. doi:10.1016/j.ijhydene.2023.10.091
  • Arjona, N.; Díaz-Real, J. A.; González-Nava, C.; Alvarez-Contreras, L.; Guerra-Balcázar, M. Metal oxides for hybrid photoassisted electrochemical energy systems. Metal Oxides for Next-Generation Optoelectronic, Photonic, and Photovoltaic Applications; Elsevier, 2024; pp 607–634. doi:10.1016/b978-0-323-99143-8.00016-x
  • Kausar, A.; Ahmad, I.; Zhao, T.; Maaza, M.; Bocchetta, P. Green Nanocomposite Electrodes/Electrolytes for Microbial Fuel Cells—Cutting-Edge Technology. Journal of Composites Science 2023, 7, 166. doi:10.3390/jcs7040166
  • Aarimuthu, G.; Sathiasivan, K.; Varadharajan, S.; Balakrishnan, M.; Albeshr, M. F.; Alrefaei, A. F.; Kim, W. Enhanced membraneless fuel cells by electrooxidation of ethylene glycol with a nanostructured cobalt metal catalyst. Environmental research 2023, 233, 115601. doi:10.1016/j.envres.2023.115601
  • Chavando, J. A. M.; Silva, V. B.; da Cruz Tarelho, L. A.; Cardoso, J. S.; Hall, M. J.; Eusébio, D. Ammonia as an alternative. Combustion Chemistry and the Carbon Neutral Future; Elsevier, 2023; pp 179–208. doi:10.1016/b978-0-323-99213-8.00008-4
  • Prasad Nayak, S.; Ventrapragada, L. K.; Rao, A. M.; Kiran Kumar, J. Porous gold-curcumin nanocomposite for enhanced electrooxidation of glycerol and ethylene glycol. Materials Letters 2023, 330, 133212. doi:10.1016/j.matlet.2022.133212
  • Elsheikh, A.; Torrero, J.; Rojas, S.; McGregor, J. In-situ FTIR spectroscopy investigation of carbon-supported PdAuNi electrocatalysts for ethanol oxidation. Journal of Electroanalytical Chemistry 2023, 928, 116985. doi:10.1016/j.jelechem.2022.116985
  • Crisafulli, R.; de Paula, D. F.; Zignani, S. C.; Spadaro, L.; Palella, A.; Boninelli, S.; Dias, J. A.; Linares, J. J. Promoting Effect of Cu on Pd Applied to the Hydrazine Electro-Oxidation and Direct Hydrazine Fuel Cells. Catalysts 2022, 12, 1639. doi:10.3390/catal12121639

Patents

  • LANGE MICHAEL. ELECTROCHEMICAL STACK. WO 2024003229 A2, Jan 4, 2024.
  • OPHARDT HEINER; LOOS VOLKER; HOOGERS GREGOR; LANG ALBRECHT. Direct isopropanol fuel cell. US 11677090 B2, June 13, 2023.
  • LANGE MICHAEL; FORSTNER MARTIN; BAUMGARTNER ROBERT. ELECTRODE. WO 2023280938 A2, Jan 12, 2023.
  • OPHARDT HEINER; LOOS VOLKER; HOOGERS GREGOR; LANG ALBRECHT. Direct isopropanol fuel cell. US 11121391 B2, Sept 14, 2021.
  • OPHARDT HEINER; LOOS VOLKER; HOOGERS GREGOR; LANG ALBRECHT. Direct isopropanol fuel cell. US 10230120 B2, March 12, 2019.
Other Beilstein-Institut Open Science Activities