Protein-coated pH-responsive gold nanoparticles: Microwave-assisted synthesis and surface charge-dependent anticancer activity

Dickson Joseph, Nisha Tyagi, Christian Geckeler and Kurt E.Geckeler
Beilstein J. Nanotechnol. 2014, 5, 1452–1462. https://doi.org/10.3762/bjnano.5.158

Supporting Information

Supporting Information features tables containing amino acid compositions in proteins, IEP and IC50 values of AuNPs, UV–vis spectral studies and photographs of colloidal dispersions on the preparation of AuNPs at acidic, neutral and basic pH conditions, structural conformation studies by using UV–vis, FTIR and SDS-PAGE, zeta potential of AuNPs in comparison with the blank proteins, and cell viability studies by using MTT assays on cells treated with different proteins.

Supporting Information File 1: Additional experimental data.
Format: PDF Size: 1.0 MB Download

Cite the Following Article

Protein-coated pH-responsive gold nanoparticles: Microwave-assisted synthesis and surface charge-dependent anticancer activity
Dickson Joseph, Nisha Tyagi, Christian Geckeler and Kurt E.Geckeler
Beilstein J. Nanotechnol. 2014, 5, 1452–1462. https://doi.org/10.3762/bjnano.5.158

How to Cite

Joseph, D.; Tyagi, N.; Geckeler, C.; E.Geckeler, K. Beilstein J. Nanotechnol. 2014, 5, 1452–1462. doi:10.3762/bjnano.5.158

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Aljarba, N. H.; Imtiaz, S.; Anwar, N.; Alanazi, I. S.; Alkahtani, S. Anticancer and microbial activities of gold nanoparticles: A mechanistic review. Journal of King Saud University - Science 2022, 34, 101907. doi:10.1016/j.jksus.2022.101907
  • Li, S.; Xue, Y.; Mai, Y.; Zhang, Y.; Shen, Q. Light-induced facile and efficient synthesis of color-variable lignin-based gold nanoparticles and its application as Pb2+ sensor. International journal of biological macromolecules 2022, 211, 26–34. doi:10.1016/j.ijbiomac.2022.05.029
  • Li, N.; Ma, Y.; Chen, N.; Tang, X.; Lv, S. Effect of Microwave Irradiation on Dipeptides and Proteins Derived from Silk During Solvation. Advanced Fiber Materials 2022, 4, 448–456. doi:10.1007/s42765-021-00117-4
  • Parushuram, N.; Ranjana, R.; Harisha, K. S.; Martis, L. J.; Sangappa, Y. Highly stable colloidal gold nanoparticles using biopolymer silk sericin: Characterization and antibacterial activity. Materials Today: Proceedings 2021, 42, 940–946. doi:10.1016/j.matpr.2020.11.854
  • Lozhkomoev, A. S.; Mikhaylov, G.; Turk, V.; Turk, B.; Vasiljeva, O. Application of Crumpled Aluminum Hydroxide Nanostructures for Cancer Treatment. Springer Tracts in Mechanical Engineering; Springer International Publishing, 2020; pp 211–223. doi:10.1007/978-3-030-60124-9_10
  • Wahba, M. I. Mechanically stable egg white protein based immobilization carrier for β-D-galactosidase: Thermodynamics and application in whey lactose hydrolysis. Reactive and Functional Polymers 2020, 155, 104696. doi:10.1016/j.reactfunctpolym.2020.104696
  • Ranjana, R.; Parushuram, N.; Harisha, K. S.; Asha, S.; Narayana, B.; Mahendra, M.; Sangappa, Y. Fabrication and characterization of conductive silk fibroin–gold nanocomposite films. Journal of Materials Science: Materials in Electronics 2019, 31, 249–264. doi:10.1007/s10854-019-02485-5
  • Fahmy, H. M.; El-Feky, A. S.; El-Daim, T. M. A.; El-Hameed, M. M. A.; Gomaa, D. A.; Hamad, A. M.; Elfky, A. A.; Elkomy, Y. H.; Farouk, N. A. Eco-friendly Methods of Gold Nanoparticles Synthesis. Nanoscience & Nanotechnology-Asia 2019, 9, 311–328. doi:10.2174/2210681208666180328154926
  • Liu, W.; Ding, F.; Wang, Y.; Lu, Z.; Zou, P.; Wang, X.; Zhao, Q.; Rao, H. A dual-readout nanosensor based on biomass-based C-dots and chitosan@AuNPs with hyaluronic acid for determination of hyaluronidase. Luminescence : the journal of biological and chemical luminescence 2019, 35, 43–51. doi:10.1002/bio.3699
  • Akturk, O.; Erdemli, Ö.; Tunalı, B. Ç. Gold nanocomposites for biomedical applications. Materials for Biomedical Engineering; Elsevier, 2019; pp 485–525. doi:10.1016/b978-0-12-818431-8.00015-5
  • Kefayat, A.; Ghahremani, F.; Motaghi, H.; Rostami, S.; Mehrgardi, M. A. Alive attenuated Salmonella as a cargo shuttle for smart carrying of gold nanoparticles to tumour hypoxic regions. Journal of drug targeting 2018, 27, 315–324. doi:10.1080/1061186x.2018.1523417
  • Khan, I.; Nagarjuna, R.; Dutta, J. R.; Ganesan, R. Towards single crystalline, highly monodisperse and catalytically active gold nanoparticles capped with probiotic Lactobacillus plantarum derived lipase. Applied Nanoscience 2018, 9, 1101–1109. doi:10.1007/s13204-018-0735-7
  • Chakraborty, A.; Boer, J. C.; Selomulya, C.; Plebanski, M. Amino Acid Functionalized Inorganic Nanoparticles as Cutting-Edge Therapeutic and Diagnostic Agents. Bioconjugate chemistry 2017, 29, 657–671. doi:10.1021/acs.bioconjchem.7b00455
  • McClements, D. J.; Xiao, H.; Demokritou, P. Physicochemical and colloidal aspects of food matrix effects on gastrointestinal fate of ingested inorganic nanoparticles. Advances in colloid and interface science 2017, 246, 165–180. doi:10.1016/j.cis.2017.05.010
  • Altunbek, M.; Culha, M. Influence of Plasmonic Nanoparticles on the Performance of Colorimetric Cell Viability Assays. Plasmonics 2016, 12, 1749–1760. doi:10.1007/s11468-016-0442-8
  • Ortega-Muñoz, M.; Giron-Gonzalez, M. D.; Salto-Gonzalez, R.; Jódar-Reyes, A. B.; De Jesus, S. E.; Lopez-Jaramillo, F. J.; Hernandez-Mateo, F.; Santoyo-Gonzalez, F. Polyethyleneimine-Coated Gold Nanoparticles: Straightforward Preparation of Efficient DNA Delivery Nanocarriers. Chemistry, an Asian journal 2016, 11, 3365–3375. doi:10.1002/asia.201600951
  • Li, R.; Li, Z.; Wu, Q.; Dongfeng, L.; Shi, J.; Chen, Y.; Yu, S.; Tao, D.; Qiao, C. One-step synthesis of monodisperse AuNPs@PANI composite nanospheres as recyclable catalysts for 4-nitrophenol reduction. Journal of Nanoparticle Research 2016, 18, 142. doi:10.1007/s11051-016-3452-8
  • Megarajan, S.; Ahmed, K. B. A.; Reddy, G. R. K.; Kumar, P. S.; Anbazhagan, V. Phytoproteins in green leaves as building blocks for photosynthesis of gold nanoparticles: An efficient electrocatalyst towards the oxidation of ascorbic acid and the reduction of hydrogen peroxide. Journal of photochemistry and photobiology. B, Biology 2015, 155, 7–12. doi:10.1016/j.jphotobiol.2015.12.009
Other Beilstein-Institut Open Science Activities