Numerical investigation of the effect of substrate surface roughness on the performance of zigzag graphene nanoribbon field effect transistors symmetrically doped with BN

Majid Sanaeepur, Arash Yazdanpanah Goharrizi and Mohammad Javad Sharifi
Beilstein J. Nanotechnol. 2014, 5, 1569–1574. https://doi.org/10.3762/bjnano.5.168

Cite the Following Article

Numerical investigation of the effect of substrate surface roughness on the performance of zigzag graphene nanoribbon field effect transistors symmetrically doped with BN
Majid Sanaeepur, Arash Yazdanpanah Goharrizi and Mohammad Javad Sharifi
Beilstein J. Nanotechnol. 2014, 5, 1569–1574. https://doi.org/10.3762/bjnano.5.168

How to Cite

Sanaeepur, M.; Yazdanpanah Goharrizi, A.; Sharifi, M. J. Beilstein J. Nanotechnol. 2014, 5, 1569–1574. doi:10.3762/bjnano.5.168

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Sanaeepur, M.; Momeni, M.; Mahmoudi, A. Power-delay-product optimal repeater design for horizontal and vertical multilayer graphene nanoribbon interconnects. Journal of Computational Electronics 2022, 21, 1088–1097. doi:10.1007/s10825-022-01897-7
  • Sanaeepur, M.; Mahmoudi, A. A comprehensive comparative study of the performance of carbon- and copper-based interconnects in ultra-large-scale integrated circuits. International Journal of Circuit Theory and Applications 2021, 49, 3394–3407. doi:10.1002/cta.3049
  • Monfared, M. H. G.; Hosseini, S. E. Armchair Graphene Nanoribbon Gate-Controllable RTD With Boron Nitride Barriers. IEEE Transactions on Electron Devices 2020, 67, 5209–5215. doi:10.1109/ted.2020.3022347
  • Esmaeili, M.; Jafari, M.; Sanaeepur, M. Negative differential resistance in nanoscale heterostructures based on zigzag graphene nanoribbons anti-symmetrically decorated with BN. Superlattices and Microstructures 2020, 145, 106584. doi:10.1016/j.spmi.2020.106584
  • Sanaeepur, M.; Mahmoudi, A. Comparative study of crosstalk noise and delay in MLGNR and Cu interconnects. In 2020 28th Iranian Conference on Electrical Engineering (ICEE), IEEE, 2020; pp 1–4. doi:10.1109/icee50131.2020.9261058
  • Sanaeepur, M. All-2D-Materials-Based Interconnects. Journal of Electronic Materials 2020, 49, 5705–5712. doi:10.1007/s11664-020-08289-2
  • Wong, K. L.; Chuan, M. W.; Hamzah, A.; Rusli, S.; Alias, N. E.; Sultan, S. M.; Lim, C. S.; Tan, M. L. P. Carrier transport of rough-edged doped GNRFETs with metal contacts at various channel widths. Superlattices and Microstructures 2020, 143, 106548. doi:10.1016/j.spmi.2020.106548
  • Sanaeepur, M. Effect of substitutional defects on resonant tunneling diodes based on armchair graphene and boron nitride nanoribbons lateral heterojunctions. Beilstein journal of nanotechnology 2020, 11, 688–694. doi:10.3762/bjnano.11.56
  • Sanaeepur, M.; Jafari, M.; Esmaeili, M. Ultrascaled Resonant Tunneling Diodes Based on BN Decorated Zigzag Graphene Nanoribbon Lateral Heterostructures. IEEE Transactions on Electron Devices 2020, 67, 725–729. doi:10.1109/ted.2019.2958421
  • Ebrahimi, M.; Horri, A.; Sanaeepur, M.; Tavakoli, M. B. Tight-binding description of graphene–BCN–graphene layered semiconductors. Journal of Computational Electronics 2020, 19, 62–69. doi:10.1007/s10825-019-01442-z
  • Sanaeepur, M. Dielectric Surface Roughness Scattering Limited Performance of MLGNR Interconnects. IEEE Transactions on Electromagnetic Compatibility 2019, 61, 532–537. doi:10.1109/temc.2018.2830182
  • Sanaeepur, M. On the Resistivity of Multi-Layer Graphene Nanoribbon Interconnects. In 2019 27th Iranian Conference on Electrical Engineering (ICEE), IEEE, 2019; pp 50–53. doi:10.1109/iraniancee.2019.8786551
  • Sanaeepur, M. Crosstalk Delay and Stability Analysis of MLGNR Interconnects on Rough Surface Dielectrics. IEEE Transactions on Nanotechnology 2019, 18, 1181–1187. doi:10.1109/tnano.2019.2945354
  • Marmolejo-Tejada, J. M.; Velasco-Medina, J. Review on graphene nanoribbon devices for logic applications. Microelectronics Journal 2016, 48, 18–38. doi:10.1016/j.mejo.2015.11.006
  • Goharrizi, A. Y.; Sanaeepur, M.; Sharifi, M. J. Improving performance of armchair graphene nanoribbon field effect transistors via boron nitride doping. Superlattices and Microstructures 2015, 85, 522–529. doi:10.1016/j.spmi.2015.04.035
Other Beilstein-Institut Open Science Activities