Growth and structural discrimination of cortical neurons on randomly oriented and vertically aligned dense carbon nanotube networks

Christoph Nick, Sandeep Yadav, Ravi Joshi, Christiane Thielemann and Jörg J. Schneider
Beilstein J. Nanotechnol. 2014, 5, 1575–1579. https://doi.org/10.3762/bjnano.5.169

Supporting Information

Supporting Information File 1: Additional growth studies through SEM.
Format: PDF Size: 389.2 KB Download

Cite the Following Article

Growth and structural discrimination of cortical neurons on randomly oriented and vertically aligned dense carbon nanotube networks
Christoph Nick, Sandeep Yadav, Ravi Joshi, Christiane Thielemann and Jörg J. Schneider
Beilstein J. Nanotechnol. 2014, 5, 1575–1579. https://doi.org/10.3762/bjnano.5.169

How to Cite

Nick, C.; Yadav, S.; Joshi, R.; Thielemann, C.; Schneider, J. J. Beilstein J. Nanotechnol. 2014, 5, 1575–1579. doi:10.3762/bjnano.5.169

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Dillon, A. P.; Moslehi, S.; Brouse, B.; Keremane, S.; Philliber, S.; Griffiths, W.; Rowland, C.; Smith, J. H.; Taylor, R. P. Evolution of Retinal Neuron Fractality When Interfacing with Carbon Nanotube Electrodes. Bioengineering (Basel, Switzerland) 2024, 11, 823. doi:10.3390/bioengineering11080823
  • Rowland, C.; Moslehi, S.; Smith, J. H.; Harland, B.; Dalrymple-Alford, J.; Taylor, R. P. Fractal Resonance: Can Fractal Geometry Be Used to Optimize the Connectivity of Neurons to Artificial Implants?. Advances in neurobiology 2024, 36, 877–906. doi:10.1007/978-3-031-47606-8_44
  • Moslehi, S.; Rowland, C.; Smith, J. H.; Watterson, W. J.; Griffiths, W.; Montgomery, R. D.; Philliber, S.; Marlow, C. A.; Perez, M.-T.; Taylor, R. P. Fractal Electronics for Stimulating and Sensing Neural Networks: Enhanced Electrical, Optical, and Cell Interaction Properties. Advances in neurobiology 2024, 36, 849–875. doi:10.1007/978-3-031-47606-8_43
  • Nascimento, L.; Fernandes, C.; Silva, R. M.; Semitela, Â.; de Sousa, B. M.; Marques, P. A. A. P.; Vieira, S. I.; Silva, R. F.; Barroca, N.; Gonçalves, G. Customizing 3D Structures of Vertically Aligned Carbon Nanotubes to Direct Neural Stem Cell Differentiation. Advanced healthcare materials 2023, 12, e2300828. doi:10.1002/adhm.202300828
  • Moslehi, S.; Rowland, C.; Smith, J. H.; Griffiths, W.; Watterson, W. J.; Niell, C. M.; Alemán, B. J.; Perez, M.-T.; Taylor, R. P. Comparison of fractal and grid electrodes for studying the effects of spatial confinement on dissociated retinal neuronal and glial behavior. Scientific reports 2022, 12, 17513. doi:10.1038/s41598-022-21742-y
  • Moslehi, S.; Rowland, C.; Smith, J. H.; Watterson, W. J.; Miller, D.; Niell, C. M.; Alemán, B. J.; Perez, M.-T.; Taylor, R. P. Controlled assembly of retinal cells on fractal and Euclidean electrodes. PloS one 2022, 17, e0265685. doi:10.1371/journal.pone.0265685
  • Kohls, A.; Maurer Ditty, M.; Dehghandehnavi, F.; Zheng, S.-Y. Vertically Aligned Carbon Nanotubes as a Unique Material for Biomedical Applications. ACS applied materials & interfaces 2022, 14, 6287–6306. doi:10.1021/acsami.1c20423
  • Mezzasalma, S. A.; Grassi, L.; Grassi, M. Physical and chemical properties of carbon nanotubes in view of mechanistic neuroscience investigations. Some outlook from condensed matter, materials science and physical chemistry. Materials science & engineering. C, Materials for biological applications 2021, 131, 112480. doi:10.1016/j.msec.2021.112480
  • Moslehi, S. Ph.D. Thesis, Sept 24, 2020.
  • Watterson, W. J.; Moslehi, S.; Rowland, C.; Zappitelli, K. M.; Smith, J. H.; Miller, D.; Chouinard, J. E.; Golledge, S. L.; Taylor, R. J. K.; Perez, M.-T. R.; Aleman, B. The Roles of an Aluminum Underlayer in the Biocompatibility and Mechanical Integrity of Vertically Aligned Carbon Nanotubes for Interfacing with Retinal Neurons. Micromachines 2020, 11, 546. doi:10.3390/mi11060546
  • Lorite, G. S.; Pitkänen, O.; Mohl, M.; Kordas, K.; Koivisto, J. T.; Kellomäki, M.; Mendonça, M. C. P.; de Jesus, M. B. Carbon nanotube-based matrices for tissue engineering. Materials for Biomedical Engineering; Elsevier, 2019; pp 323–353. doi:10.1016/b978-0-12-818431-8.00003-9
  • Song, Y. H.; Agrawal, N. K.; Griffin, J. M.; Schmidt, C. E. Recent advances in nanotherapeutic strategies for spinal cord injury repair. Advanced drug delivery reviews 2018, 148, 38–59. doi:10.1016/j.addr.2018.12.011
  • Malek, I.; Schaber, C. F.; Heinlein, T.; Schneider, J. J.; Gorb, S. N.; Schmitz, R. A. Vertically aligned multi walled carbon nanotubes prevent biofilm formation of medically relevant bacteria. Journal of materials chemistry. B 2016, 4, 5228–5235. doi:10.1039/c6tb00942e
  • Nick, C.; Yadav, S.; Joshi, R.; Schneider, J. J.; Thielemann, C. A three-dimensional microelectrode array composed of vertically aligned ultra-dense carbon nanotube networks. Applied Physics Letters 2015, 107, 013101. doi:10.1063/1.4926330
Other Beilstein-Institut Open Science Activities