Silica nanoparticles are less toxic to human lung cells when deposited at the air–liquid interface compared to conventional submerged exposure

Alicja Panas, Andreas Comouth, Harald Saathoff, Thomas Leisner, Marco Al-Rawi, Michael Simon, Gunnar Seemann, Olaf Dössel, Sonja Mülhopt, Hanns-Rudolf Paur, Susanne Fritsch-Decker, Carsten Weiss and Silvia Diabaté
Beilstein J. Nanotechnol. 2014, 5, 1590–1602. https://doi.org/10.3762/bjnano.5.171

Supporting Information

Supporting Information contains 1) data obtained by dynamic light scattering of the particles suspensions 2) data on the deposited mass dose for Aerosil200 particles after ALI exposure and 3) deposition kinetics of the mass doses for Aerosil200 and SiO2-50 nm particles during ALI and submerged exposure.

Supporting Information File 1: Additional experimental data.
Format: PDF Size: 361.4 KB Download

Cite the Following Article

Silica nanoparticles are less toxic to human lung cells when deposited at the air–liquid interface compared to conventional submerged exposure
Alicja Panas, Andreas Comouth, Harald Saathoff, Thomas Leisner, Marco Al-Rawi, Michael Simon, Gunnar Seemann, Olaf Dössel, Sonja Mülhopt, Hanns-Rudolf Paur, Susanne Fritsch-Decker, Carsten Weiss and Silvia Diabaté
Beilstein J. Nanotechnol. 2014, 5, 1590–1602. https://doi.org/10.3762/bjnano.5.171

How to Cite

Panas, A.; Comouth, A.; Saathoff, H.; Leisner, T.; Al-Rawi, M.; Simon, M.; Seemann, G.; Dössel, O.; Mülhopt, S.; Paur, H.-R.; Fritsch-Decker, S.; Weiss, C.; Diabaté, S. Beilstein J. Nanotechnol. 2014, 5, 1590–1602. doi:10.3762/bjnano.5.171

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Xu, H.; Li, Y.; Zhao, X.; Guo, C.; Li, Y. Respiratory toxicity of amorphous silica nanoparticles: a review. Environmental Chemistry Letters 2024. doi:10.1007/s10311-024-01787-3
  • Gosselink, I. F.; van Schooten, F. J.; Drittij, M. J.; Höppener, E. M.; Leonhardt, P.; Moschini, E.; Serchi, T.; Gutleb, A. C.; Kooter, I. M.; Remels, A. H. Assessing toxicity of amorphous nanoplastics in airway- and lung epithelial cells using air-liquid interface models. Chemosphere 2024, 368, 143702. doi:10.1016/j.chemosphere.2024.143702
  • Madl, A. K.; Donnell, M. T.; Covell, L. T. Synthetic vitreous fibers (SVFs): adverse outcome pathways (AOPs) and considerations for next generation new approach methods (NAMs). Critical reviews in toxicology 2024, 54, 754–804. doi:10.1080/10408444.2024.2390020
  • Buckley, A.; Guo, C.; Laycock, A.; Cui, X.; Belinga-Desaunay-Nault, M.-F.; Valsami-Jones, E.; Leonard, M.; Smith, R. Aerosol exposure at air-liquid-interface (AE-ALI) in vitro toxicity system characterisation: Particle deposition and the importance of air control responses. Toxicology in vitro : an international journal published in association with BIBRA 2024, 100, 105889. doi:10.1016/j.tiv.2024.105889
  • Waye, A. A.; Ticiani, E.; Veiga-Lopez, A. Chemical mixture that targets the epidermal growth factor pathway impairs human trophoblast cell functions. Toxicology and applied pharmacology 2024, 483, 116804. doi:10.1016/j.taap.2024.116804
  • Bredeck, G.; Dobner, J.; Stahlmecke, B.; Fomba, K. W.; Herrmann, H.; Rossi, A.; Schins, R. P. F. Saharan dust induces NLRP3-dependent inflammatory cytokines in an alveolar air-liquid interface co-culture model. Particle and fibre toxicology 2023, 20, 39. doi:10.1186/s12989-023-00550-w
  • Lin, Y.-J.; Yang, C.-C.; Lee, I.-T.; Wu, W.-B.; Lin, C.-C.; Hsiao, L.-D.; Yang, C.-M. Reactive Oxygen Species-Dependent Activation of EGFR/Akt/p38 Mitogen-Activated Protein Kinase and JNK1/2/FoxO1 and AP-1 Pathways in Human Pulmonary Alveolar Epithelial Cells Leads to Up-Regulation of COX-2/PGE2 Induced by Silica Nanoparticles. Biomedicines 2023, 11, 2628. doi:10.3390/biomedicines11102628
  • Dilger, M.; Armant, O.; Ramme, L.; Mülhopt, S.; Sapcariu, S. C.; Schlager, C.; Dilger, E.; Reda, A.; Orasche, J.; Schnelle-Kreis, J.; Conlon, T. M.; Yildirim, A. Ö.; Hartwig, A.; Zimmermann, R.; Hiller, K.; Diabaté, S.; Paur, H.-R.; Weiss, C. Systems toxicology of complex wood combustion aerosol reveals gaseous carbonyl compounds as critical constituents. Environment international 2023, 179, 108169. doi:10.1016/j.envint.2023.108169
  • Tilly, T. B.; Ward, R. X.; Morea, A. F.; Nelson, M. T.; Robinson, S. E.; Eiguren-Fernandez, A.; Lewis, G. S.; Lednicky, J. A.; Sabo-Attwood, T.; Hussain, S. M.; Wu, C.-Y. Toxicity assessment of CeO₂ and CuO nanoparticles at the air-liquid interface using bioinspired condensational particle growth. Hygiene and environmental health advances 2023, 7, 100074. doi:10.1016/j.heha.2023.100074
  • Bessa, M. J.; Brandão, F.; Rosário, F.; Moreira, L.; Reis, A. T.; Valdiglesias, V.; Laffon, B.; Fraga, S.; Teixeira, J. P. Assessing the in vitro toxicity of airborne (nano)particles to the human respiratory system: from basic to advanced models. Journal of toxicology and environmental health. Part B, Critical reviews 2023, 26, 67–96. doi:10.1080/10937404.2023.2166638
  • Ruijter, N.; Soeteman-Hernández, L. G.; Carrière, M.; Boyles, M.; McLean, P.; Catalán, J.; Katsumiti, A.; Cabellos, J.; Delpivo, C.; Sánchez Jiménez, A.; Candalija, A.; Rodríguez-Llopis, I.; Vázquez-Campos, S.; Cassee, F. R.; Braakhuis, H. The State of the Art and Challenges of In Vitro Methods for Human Hazard Assessment of Nanomaterials in the Context of Safe-by-Design. Nanomaterials (Basel, Switzerland) 2023, 13, 472. doi:10.3390/nano13030472
  • Di Ianni, E.; Jacobsen, N. R.; Vogel, U.; Møller, P. Predicting nanomaterials pulmonary toxicity in animals by cell culture models: Achievements and perspectives. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology 2022, 14, e1794. doi:10.1002/wnan.1794
  • Meldrum, K.; Moura, J. A.; Doak, S. H.; Clift, M. J. D. Dynamic Fluid Flow Exacerbates the (Pro-)Inflammatory Effects of Aerosolised Engineered Nanomaterials In Vitro. Nanomaterials (Basel, Switzerland) 2022, 12, 3431. doi:10.3390/nano12193431
  • Friesen, A.; Fritsch-Decker, S.; Hufnagel, M.; Mülhopt, S.; Stapf, D.; Weiss, C.; Hartwig, A. Gene Expression Profiling of Mono- and Co-Culture Models of the Respiratory Tract Exposed to Crystalline Quartz under Submerged and Air-Liquid Interface Conditions. International journal of molecular sciences 2022, 23, 7773. doi:10.3390/ijms23147773
  • Friesen, A.; Fritsch-Decker, S.; Hufnagel, M.; Mülhopt, S.; Stapf, D.; Hartwig, A.; Weiss, C. Comparing α-Quartz-Induced Cytotoxicity and Interleukin-8 Release in Pulmonary Mono- and Co-Cultures Exposed under Submerged and Air-Liquid Interface Conditions. International journal of molecular sciences 2022, 23, 6412. doi:10.3390/ijms23126412
  • Huang, Y.; Li, P.; Zhao, R.; Zhao, L.; Liu, J.; Peng, S.; Fu, X.; Wang, X.; Luo, R.; Wang, R.; Zhang, Z. Silica nanoparticles: Biomedical applications and toxicity. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2022, 151, 113053. doi:10.1016/j.biopha.2022.113053
  • Forest, V. Experimental and Computational Nanotoxicology-Complementary Approaches for Nanomaterial Hazard Assessment. Nanomaterials (Basel, Switzerland) 2022, 12, 1346. doi:10.3390/nano12081346
  • Mostafa, M. Y. A.; Khalaf, H. N. B.; Zhukovsky, M. V. Dynamic of Particulate Matter for Quotidian Aerosol Sources in Indoor Air. Atmosphere 2021, 12, 1682. doi:10.3390/atmos12121682
  • Bessa, M. J.; Brandão, F.; Fokkens, P. H. B.; Leseman, D. L. A. C.; Boere, A. J. F.; Cassee, F. R.; Salmatonidis, A.; Viana, M.; Vulpoi, A.; Simon, S.; Monfort, E.; Teixeira, J. P.; Fraga, S. In Vitro Toxicity of Industrially Relevant Engineered Nanoparticles in Human Alveolar Epithelial Cells: Air–Liquid Interface versus Submerged Cultures. Nanomaterials (Basel, Switzerland) 2021, 11, 3225. doi:10.3390/nano11123225
  • Jiang, J.; Ding, X.; Isaacson, K. P.; Tasoglou, A.; Huber, H.; Shah, A. D.; Jung, N.; Boor, B. E. Ethanol-Based Disinfectant Sprays Drive Rapid Changes in the Chemical Composition of Indoor Air in Residential Buildings. Journal of hazardous materials letters 2021, 2, 100042. doi:10.1016/j.hazl.2021.100042
Other Beilstein-Institut Open Science Activities