Probing viscoelastic surfaces with bimodal tapping-mode atomic force microscopy: Underlying physics and observables for a standard linear solid model

Santiago D. Solares
Beilstein J. Nanotechnol. 2014, 5, 1649–1663. https://doi.org/10.3762/bjnano.5.176

Cite the Following Article

Probing viscoelastic surfaces with bimodal tapping-mode atomic force microscopy: Underlying physics and observables for a standard linear solid model
Santiago D. Solares
Beilstein J. Nanotechnol. 2014, 5, 1649–1663. https://doi.org/10.3762/bjnano.5.176

How to Cite

Solares, S. D. Beilstein J. Nanotechnol. 2014, 5, 1649–1663. doi:10.3762/bjnano.5.176

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Damircheli, M.; Jung, U.; Wagner, R. The effect of sample viscoelastic properties and cantilever amplitudes on maximum repulsive force, indentation, and energy dissipation in bimodal AFM. Physica Scripta 2023, 98, 35708–035708. doi:10.1088/1402-4896/acb973
  • Santos, S.; Gadelrab, K.; Olukan, T.; Font, J.; Barcons, V.; Chiesa, M. Probing power laws in multifrequency AFM. Applied Physics Letters 2023, 122. doi:10.1063/5.0141741
  • Chandrashekar, A.; Givois, A.; Belardinelli, P.; Penning, C. L.; Aragón, A. M.; Staufer, U.; Alijani, F. Sensitivity of viscoelastic characterization in multi-harmonic atomic force microscopy. Soft matter 2022, 18, 8748–8755. doi:10.1039/d2sm00482h
  • Wang, L.; Xue, X.; Xue, W.; Zhao, B. Analyzing the Formation Mechanism of Cross-City Transportation Network Resilience. Discrete Dynamics in Nature and Society 2021, 2021, 1–12. doi:10.1155/2021/5524719
  • Benaglia, S.; Amo, C. A.; Garcia, R. Fast, quantitative and high resolution mapping of viscoelastic properties with bimodal AFM. Nanoscale 2019, 11, 15289–15297. doi:10.1039/c9nr04396a
  • Ganser, C.; Czibula, C.; Tscharnuter, D.; Schöberl, T.; Teichert, C.; Hirn, U. Combining adhesive contact mechanics with a viscoelastic material model to probe local material properties by AFM. Soft matter 2017, 14, 140–150. doi:10.1039/c7sm02057k
  • Chim, Y. H. Ph.D. Thesis, Jan 1, 2017.
  • Gonzalez, D.; Alfredo, J.
  • Labuda, A.; Kocun, M.; Walsh, T.; Meinhold, J.; Proksch, T.; Meinhold, W.; Lysy, M.; Proksch, R. Calibration of higher eigenmodes of cantilevers. The Review of scientific instruments 2016, 87, 073705. doi:10.1063/1.4955122
  • Solares, S. D. Nanoscale effects in the characterization of viscoelastic materials with atomic force microscopy: coupling of a quasi-three-dimensional standard linear solid model with in-plane surface interactions. Beilstein journal of nanotechnology 2016, 7, 554–571. doi:10.3762/bjnano.7.49
  • Zhou, X.; Yu, D.; Shao, X.; Zhang, S.-Q.; Wang, S. Research and applications of viscoelastic vibration damping materials: A review. Composite Structures 2016, 136, 460–480. doi:10.1016/j.compstruct.2015.10.014
  • Solares, S. D. A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy. Beilstein journal of nanotechnology 2015, 6, 2233–2241. doi:10.3762/bjnano.6.229
  • Haviland, D. B.; van Eysden, C. A.; Forchheimer, D.; Platz, D.; Kassa, H. G.; Leclère, P. Probing viscoelastic response of soft material surfaces at the nanoscale. Soft matter 2015, 12, 619–624. doi:10.1039/c5sm02154e
  • Eslami, B.; López-Guerra, E. A.; Diaz, A. J.; Solares, S. D. Optimization of the excitation frequency for high probe sensitivity in single-eigenmode and bimodal tapping-mode AFM. Nanotechnology 2015, 26, 165703. doi:10.1088/0957-4484/26/16/165703
  • Iversen, K. Ph.D. Thesis, Jan 1, 2015.
  • López-Guerra, E. A.; Solares, S. D. Modeling viscoelasticity through spring-dashpot models in intermittent-contact atomic force microscopy. Beilstein journal of nanotechnology 2014, 5, 2149–2163. doi:10.3762/bjnano.5.224
Other Beilstein-Institut Open Science Activities