In vitro and in vivo interactions of selected nanoparticles with rodent serum proteins and their consequences in biokinetics

Wolfgang G. Kreyling, Stefanie Fertsch-Gapp, Martin Schäffler, Blair D. Johnston, Nadine Haberl, Christian Pfeiffer, Jörg Diendorf, Carsten Schleh, Stephanie Hirn, Manuela Semmler-Behnke, Matthias Epple and Wolfgang J. Parak
Beilstein J. Nanotechnol. 2014, 5, 1699–1711. https://doi.org/10.3762/bjnano.5.180

Cite the Following Article

In vitro and in vivo interactions of selected nanoparticles with rodent serum proteins and their consequences in biokinetics
Wolfgang G. Kreyling, Stefanie Fertsch-Gapp, Martin Schäffler, Blair D. Johnston, Nadine Haberl, Christian Pfeiffer, Jörg Diendorf, Carsten Schleh, Stephanie Hirn, Manuela Semmler-Behnke, Matthias Epple and Wolfgang J. Parak
Beilstein J. Nanotechnol. 2014, 5, 1699–1711. https://doi.org/10.3762/bjnano.5.180

How to Cite

Kreyling, W. G.; Fertsch-Gapp, S.; Schäffler, M.; Johnston, B. D.; Haberl, N.; Pfeiffer, C.; Diendorf, J.; Schleh, C.; Hirn, S.; Semmler-Behnke, M.; Epple, M.; Parak, W. J. Beilstein J. Nanotechnol. 2014, 5, 1699–1711. doi:10.3762/bjnano.5.180

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Angel, S.; Eades, L. J.; Sim, G.; Czopek, A.; Dhaun, N.; Krystek, P.; Miller, M. R. New insights into the association of air pollution and kidney diseases by tracing gold nanoparticles with inductively coupled plasma mass spectrometry. Analytical and bioanalytical chemistry 2024, 416, 2683–2689. doi:10.1007/s00216-023-05105-8
  • Saini, P. K.; Kumar, N.; Keshu; Shanker, U. Health Issues and Risk Assessment of Nanomaterials. Handbook of Green and Sustainable Nanotechnology; Springer International Publishing, 2023; pp 2553–2579. doi:10.1007/978-3-031-16101-8_30
  • Miao, Y.-B.; Zhao, W.; Renchi, G.; Gong, Y.; Shi, Y. Customizing delivery nano-vehicles for precise brain tumor therapy. Journal of nanobiotechnology 2023, 21, 32. doi:10.1186/s12951-023-01775-9
  • Saini, P. K.; Kumar, N.; Keshu; Shanker, U. Health Issues and Risk Assessment of Nanomaterial. Handbook of Green and Sustainable Nanotechnology; Springer International Publishing, 2022; pp 1–27. doi:10.1007/978-3-030-69023-6_30-1
  • Vogt, R.; Steinhoff, B.; Mozhayeva, D.; Vogt, E.; Metreveli, G.; Schönherr, H.; Engelhard, C.; Wanzenböck, J.; Lamatsch, D. K. Incubation media modify silver nanoparticle toxicity for whitefish (Coregonus lavaretus) and roach (Rutilus rutilus) embryos. Journal of toxicology and environmental health. Part A 2021, 85, 1–20. doi:10.1080/15287394.2021.1988014
  • McGinnity, T. L.; Sokolova, V.; Prymak, O.; Nallathamby, P. D.; Epple, M.; Roeder, R. K. Colloidal stability, cytotoxicity, and cellular uptake of HfO2 nanoparticles. Journal of biomedical materials research. Part B, Applied biomaterials 2021, 109, 1407–1417. doi:10.1002/jbm.b.34800
  • Mbanga, O.; Cukrowska, E.; Gulumian, M. Dissolution of citrate-stabilized, polyethylene glycol–coated carboxyl and amine-functionalized gold nanoparticles in simulated biological fluids and environmental media. Journal of Nanoparticle Research 2021, 23, 1–16. doi:10.1007/s11051-020-05132-x
  • Tarrahi, R.; Mahjouri, S.; Khataee, A. A review on in vivo and in vitro nanotoxicological studies in plants: A headlight for future targets. Ecotoxicology and environmental safety 2020, 208, 111697. doi:10.1016/j.ecoenv.2020.111697
  • Sharifi, S.; Caracciolo, G.; Mahmoudi, M. Biomolecular Corona Affects Controlled Release of Drug Payloads from Nanocarriers. Trends in pharmacological sciences 2020, 41, 641–652. doi:10.1016/j.tips.2020.06.011
  • Zheng, C.; Tian, X.; Cai, J.; Huang, L.; Wang, S.; Fanwen, Y.; Ma, Y.; Xie, F.; Li, L. In vivo immunotoxicity of Gd 2 O 3 :Eu 3+ nanoparticles and the associated molecular mechanism. Journal of biochemical and molecular toxicology 2020, 34, e22562. doi:10.1002/jbt.22562
  • Nedder, M.; Boland, S.; Devineau, S.; Zerrad-Saadi, A.; Rogozarski, J.; Lai-Kuen, R.; Baya, I.; Guibourdenche, J.; Vibert, F.; Chissey, A.; Gil, S.; Coumoul, X.; Fournier, T.; Ferecatu, I. Uptake of Cerium Dioxide Nanoparticles and Impact on Viability, Differentiation and Functions of Primary Trophoblast Cells from Human Placenta. Nanomaterials (Basel, Switzerland) 2020, 10, 1309. doi:10.3390/nano10071309
  • Geitner, N. K.; Hendren, C. O.; Cornelis, G.; Kaegi, R.; Lead, J. R.; Lowry, G. V.; Lynch, I.; Nowack, B.; Petersen, E. J.; Bernhardt, E. S.; Brown, S. C.; Chen, W.; de Garidel-Thoron, C.; Hanson, J.; Harper, S. L.; Jones, K.; von der Kammer, F.; Kennedy, A. J.; Kidd, J.; Matson, C. W.; Metcalfe, C. D.; Pedersen, J. A.; Peijnenburg, W. J.; Quik, J. T.; Rodrigues, S. M.; Rose, J.; Sayre, P.; Simonin, M.; Svendsen, C.; Tanguay, R. L.; Tefenkji, N.; van Teunenbroek, T.; Thies, G.; Tian, Y.; Rice, J.; Turner, A.; Liu, J.; Unrine, J. M.; Vance, M. E.; White, J. C.; Wiesner, M. R. Environmental Science: Nano - Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. Environmental Science: Nano 2020, 7, 13–36. doi:10.1039/c9en00448c
  • Widiastuti, E.; Arifianti, R.; Khairani, I. A.; Christianto, Y.; Ara, N. F.; Maharani, H. W. Antioxidant Effect of Clerodendrum sp and Acanthus illicifolius Methanol Extraction on Blood Profile of Male Mice Induced by Benzo(α)pyrene. IOP Conference Series: Earth and Environmental Science 2019, 305, 012011. doi:10.1088/1755-1315/305/1/012011
  • Raftis, J.; Miller, M. R. Nanoparticle translocation and multi-organ toxicity: A particularly small problem. Nano today 2019, 26, 8–12. doi:10.1016/j.nantod.2019.03.010
  • Widiastuti, E. L.; Khairani, I. A. Antioxidant effect of taurine and macroalgae (Sargassumsp. andGracilariasp.) extraction on numbers of blood cells and protein profile of mice induced by benzo(α)piren. Journal of Physics: Conference Series 2018, 1116, 052073. doi:10.1088/1742-6596/1116/5/052073
  • Yuan, D.; He, H.; Wu, Y.; Fan, J.; Cao, Y. Physiologically Based Pharmacokinetic Modeling of Nanoparticles. Journal of pharmaceutical sciences 2018, 108, 58–72. doi:10.1016/j.xphs.2018.10.037
  • Hong, J.; Chen, Y.-F.; Ma, Y.; Zhang, F.-F.; Wang, C.-M.; Ding, Y. Surface Modifier Effects on Gold Nanoprobe for the Assay of Matrix Metalloproteinases. Advanced Biosystems 2018, 2, 1800115. doi:10.1002/adbi.201800115
  • Pacheco, I.; Buzea, C. Nanoparticle Uptake by Plants: Beneficial or Detrimental?. Phytotoxicity of Nanoparticles; Springer International Publishing, 2018; pp 1–61. doi:10.1007/978-3-319-76708-6_1
  • Gawali, P.; Jadhav, B. L. Synthesis of Ag/AgCl Nanoparticles and their action on Human Serum albumin: A fluorescence study. Process Biochemistry 2018, 69, 106–122. doi:10.1016/j.procbio.2018.03.020
  • Lara, S.; Perez-Potti, A.; Herda, L. M.; Adumeau, L.; Dawson, K. A.; Yan, Y. Differential Recognition of Nanoparticle Protein Corona and Modified Low-Density Lipoprotein by Macrophage Receptor with Collagenous Structure. ACS nano 2018, 12, 4930–4937. doi:10.1021/acsnano.8b02014
Other Beilstein-Institut Open Science Activities