Quasi-1D physics in metal-organic frameworks: MIL-47(V) from first principles

Danny E. P. Vanpoucke, Jan W. Jaeken, Stijn De Baerdemacker, Kurt Lejaeghere and Veronique Van Speybroeck
Beilstein J. Nanotechnol. 2014, 5, 1738–1748. https://doi.org/10.3762/bjnano.5.184

Supporting Information

Supporting information contains the spin-dependent optimized MIL-47(V) structures. These structures have also been deposited in the Cambridge Crystalographic Data Center database CCDC 1021380–1021384.

Supporting Information File 1: MIL-47(V) structure in the FM spin configuration.
Format: CIF Size: 6.6 KB Download
Supporting Information File 2: MIL-47(V) structure in the SFM spin configuration.
Format: CIF Size: 6.6 KB Download
Supporting Information File 3: MIL-47(V) structure in the AF1 spin configuration.
Format: CIF Size: 6.6 KB Download
Supporting Information File 4: MIL-47(V) structure in the AF2 spin configuration.
Format: CIF Size: 6.6 KB Download
Supporting Information File 5: MIL-47(V) structure in the AF3 spin configuration.
Format: CIF Size: 6.6 KB Download

Cite the Following Article

Quasi-1D physics in metal-organic frameworks: MIL-47(V) from first principles
Danny E. P. Vanpoucke, Jan W. Jaeken, Stijn De Baerdemacker, Kurt Lejaeghere and Veronique Van Speybroeck
Beilstein J. Nanotechnol. 2014, 5, 1738–1748. https://doi.org/10.3762/bjnano.5.184

How to Cite

Vanpoucke, D. E. P.; Jaeken, J. W.; De Baerdemacker, S.; Lejaeghere, K.; Van Speybroeck, V. Beilstein J. Nanotechnol. 2014, 5, 1738–1748. doi:10.3762/bjnano.5.184

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Pan, Y.; Sanati, S.; Abazari, R.; Jankowska, A.; Goscianska, J.; Srivastava, V.; Lassi, U.; Gao, J. Vanadium- and manganese-based metal-organic frameworks for potential environmental and catalysis applications. Coordination Chemistry Reviews 2024, 522, 216231. doi:10.1016/j.ccr.2024.216231
  • Wang, Y.; Cao, S.; Zhao, J.; Zhang, X.; Du, X.; Li, J.; Wu, F. Conductive vanadium-based metal-organic framework nanosheets membranes as polysulfide inhibitors for lithium-sulfur batteries. Journal of Alloys and Compounds 2023, 960, 170922. doi:10.1016/j.jallcom.2023.170922
  • Rogge, S. M. J. Computational Modelling of MOF Mechanics: From Elastic Behaviour to Phase Transformations. Mechanical Behaviour of Metal – Organic Framework Materials; The Royal Society of Chemistry, 2023; pp 113–204. doi:10.1039/9781839166594-00113
  • Quainoo, T.; Lavan, S. N.; Liu, Z.-F. Van der Waals density functional study of hydrocarbon adsorption and separation in metal–organic frameworks without open metal sites. Journal of Materials Research 2021, 1–12.
  • Quainoo, T.; Lavan, S. N.; Liu, Z.-F. Van der Waals density functional study of hydrocarbon adsorption and separation in metal–organic frameworks without open metal sites. Journal of Materials Research 2021, 37, 334–345. doi:10.1557/s43578-021-00356-6
  • Maes, K.; Martin, L. I. D. J.; Khelifi, S.; Hoffman, A. E. J.; Leus, K.; Van Der Voort, P.; Goovaerts, E.; Smet, P.; Van Speybroeck, V.; Callens, F.; Vrielinck, H. Identification of vanadium dopant sites in the metal-organic framework DUT-5(Al). Physical chemistry chemical physics : PCCP 2021, 23, 7088–7100. doi:10.1039/d1cp00695a
  • Hosseini, M. R.; Vanpoucke, D. E. P.; Giannozzi, P.; Berahman, M.; Hadipour, N. L. Investigation of structural, electronic and magnetic properties of breathing metal─organic framework MIL-47(Mn): a first principles approach. RSC advances 2020, 10, 4786–4794. doi:10.1039/c9ra09196c
  • Wieme, J.; Rogge, S.; Yot, P. G.; Vanduyfhuys, L.; Lee, S.-K.; Chang, J.-S.; Waroquier, M.; Maurin, G.; Van Speybroeck, V. Pillared-layered metal–organic frameworks for mechanical energy storage applications. Journal of Materials Chemistry A 2019, 7, 22663–22674. doi:10.1039/c9ta01586h
  • Vanpoucke, D. E. P.; Nicley, S. S.; Raymakers, J.; Maes, W.; Haenen, K. Can europium atoms form luminescent centres in diamond: A combined theoretical-experimental study. Diamond and Related Materials 2019, 94, 233–241. doi:10.1016/j.diamond.2019.02.024
  • Rodrigues, A. D.; Fahsi, K.; Dumail, X.; Masquelez, N.; van der Lee, A.; Mallet-Ladeira, S.; Sibille, R.; Filhol, J.-S.; Dutremez, S. G. Joint Experimental and Computational Investigation of the Flexibility of a Diacetylene-Based Mixed-Linker MOF: Revealing the Existence of Two Low-Temperature Phase Transitions and the Presence of Colossal Positive and Giant Negative Thermal Expansions. Chemistry (Weinheim an der Bergstrasse, Germany) 2018, 24, 1586–1605. doi:10.1002/chem.201703711
  • Tsipis, A. C. DFT challenge of intermetallic interactions: From metallophilicity and metallaromaticity to sextuple bonding. Coordination Chemistry Reviews 2017, 345, 229–262. doi:10.1016/j.ccr.2016.08.005
  • Vanpoucke, D. E. P. Linker Functionalization in MIL-47(V)-R Metal–Organic Frameworks: Understanding the Electronic Structure. The Journal of Physical Chemistry C 2017, 121, 8014–8022. doi:10.1021/acs.jpcc.7b01491
  • Rehder, D. Implications of vanadium in technical applications and pharmaceutical issues. Inorganica Chimica Acta 2017, 455, 378–389. doi:10.1016/j.ica.2016.06.021
  • Rounaghi, S. A.; Eshghi, H.; Scudino, S.; Vyalikh, A.; Vanpoucke, D. E. P.; Gruner, W.; Oswald, S.; Rashid, A. K.; Khoshkhoo, M. S.; Scheler, U.; Eckert, J. Mechanochemical route to the synthesis of nanostructured Aluminium nitride. Scientific reports 2016, 6, 33375. doi:10.1038/srep33375
  • Wieme, J.; Vanduyfhuys, L.; Rogge, S.; Waroquier, M.; Van Speybroeck, V. Exploring the Flexibility of MIL-47(V)-Type Materials Using Force Field Molecular Dynamics Simulations. The journal of physical chemistry. C, Nanomaterials and interfaces 2016, 120, 14934–14947. doi:10.1021/acs.jpcc.6b04422
  • Vanpoucke, D. E. P. Developments in Strategic Ceramic Materials; Wiley, 2015; pp 323–334. doi:10.1002/9781119211747.ch26
  • Gu, Z.-G.; Heinke, L.; Wöll, C.; Neumann, T.; Wenzel, W.; Li, Q.; Fink, K.; Gordan, O. D.; Zahn, D. R. T. Experimental and theoretical investigations of the electronic band structure of metal-organic frameworks of HKUST-1 type. Applied Physics Letters 2015, 107, 183301. doi:10.1063/1.4934737
  • Vanpoucke, D. E. P.; Lejaeghere, K.; Van Speybroeck, V.; Waroquier, M.; Ghysels, A. Mechanical Properties from Periodic Plane Wave Quantum Mechanical Codes: The Challenge of the Flexible Nanoporous MIL-47(V) Framework. The Journal of Physical Chemistry C 2015, 119, 23752–23766. doi:10.1021/acs.jpcc.5b06809
  • Bueken, B.; Vermoortele, F.; Vanpoucke, D. E. P.; Reinsch, H.; Tsou, C.-C.; Valvekens, P.; De Baerdemaeker, T.; Ameloot, R.; Kirschhock, C. E. A.; Van Speybroeck, V.; Mayer, J. M.; De Vos, D. A Flexible Photoactive Titanium Metal–Organic Framework Based on a [TiIV3(μ3-O)(O)2(COO)6] Cluster. Angewandte Chemie (International ed. in English) 2015, 54, 13912–13917. doi:10.1002/anie.201505512
  • Bueken, B.; Vermoortele, F.; Vanpoucke, D. E. P.; Reinsch, H.; Tsou, C.; Valvekens, P.; De Baerdemaeker, T.; Ameloot, R.; Kirschhock, C. E. A.; Van Speybroeck, V.; Mayer, J. M.; De Vos, D. A Flexible Photoactive Titanium Metal–Organic Framework Based on a [TiIV3(μ3‐O)(O)2(COO)6] Cluster. Angewandte Chemie 2015, 127, 14118–14123. doi:10.1002/ange.201505512
Other Beilstein-Institut Open Science Activities