Room temperature, ppb-level NO2 gas sensing of multiple-networked ZnSe nanowire sensors under UV illumination

Sunghoon Park, Soohyun Kim, Wan In Lee, Kyoung-Kook Kim and Chongmu Lee
Beilstein J. Nanotechnol. 2014, 5, 1836–1841. https://doi.org/10.3762/bjnano.5.194

Cite the Following Article

Room temperature, ppb-level NO2 gas sensing of multiple-networked ZnSe nanowire sensors under UV illumination
Sunghoon Park, Soohyun Kim, Wan In Lee, Kyoung-Kook Kim and Chongmu Lee
Beilstein J. Nanotechnol. 2014, 5, 1836–1841. https://doi.org/10.3762/bjnano.5.194

How to Cite

Park, S.; Kim, S.; Lee, W. I.; Kim, K.-K.; Lee, C. Beilstein J. Nanotechnol. 2014, 5, 1836–1841. doi:10.3762/bjnano.5.194

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Thayil, R.; Parne, S. R. Tuning ZnSe nanostructures for enhanced ammonia sensing at room temperature. Materials Letters 2024, 371, 136919. doi:10.1016/j.matlet.2024.136919
  • Korotcenkov, G. II-VI Semiconductor-Based Conductometric Gas Sensors: Is There a Future for These Sensors?. Sensors (Basel, Switzerland) 2024, 24, 3861. doi:10.3390/s24123861
  • Khalil, N.; Yaqoob, J.; Khan, M. U.; Rizwan, H. A.; Jabbar, A.; Hussain, R.; Zafar, Z.; Darwish, H. W.; Abbas, F. Exploring the potential of ZnSe nanocage as a promising tool for CO2 and SO2 sensing: A computational study. Computational and Theoretical Chemistry 2024, 1231, 114428. doi:10.1016/j.comptc.2023.114428
  • Sharma, A.; Gupta, G. Recent development and prospects for metal Selenide-based gas sensors. Materials Science and Engineering: B 2023, 290, 116333. doi:10.1016/j.mseb.2023.116333
  • Vasiliev, R. B.; Chizhov, A. S.; Rumyantseva, M. N. Nanocomposite and Hybrid-Based Electric and Electronic Gas Sensors. Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors; Springer International Publishing, 2023; pp 201–231. doi:10.1007/978-3-031-24000-3_8
  • Gaiardo, A.; Fabbri, B.; Valt, M. Nanomaterial-Based Electric and Electronic Gas Sensors. Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors; Springer International Publishing, 2023; pp 253–280. doi:10.1007/978-3-031-24000-3_10
  • Vanalakar, S. A.; Deshmukh, S. P.; Patil, S. M. Gas Sensors Based on Chalcogenides. Smart Nanostructure Materials and Sensor Technology; Springer Nature Singapore, 2022; pp 201–223. doi:10.1007/978-981-19-2685-3_10
  • Inaba, M.; Oda, T.; Kono, M.; Phansiri, N.; Morita, T.; Nakahara, S.; Nakano, M.; Suehiro, J. Effect of mixing ratio on NO2 gas sensor response with SnO2-decorated carbon nanotube channels fabricated by one-step dielectrophoretic assembly. Sensors and Actuators B: Chemical 2021, 344, 130257. doi:10.1016/j.snb.2021.130257
  • Gupta, T.; Chauhan, R. P. Impact of N + ion implantation on the properties of ZnSe thin films. Journal of Materials Science: Materials in Electronics 2021, 32, 6185–6198. doi:10.1007/s10854-021-05335-5
  • Dzhurkov, V.; Levi, Z.; Nesheva, D.; Hristova-Vasileva, T.; Terziyska, P. Properties of ZnSe nanocrystalline thin films prepared by thermal evaporation. Journal of Physics: Conference Series 2021, 1762, 012036. doi:10.1088/1742-6596/1762/1/012036
  • Liu, W.; Gu, D.; Li, X. Detection of Ppb-level NO2 using mesoporous ZnSe/SnO2 core-shell microspheres based chemical sensors. Sensors and Actuators B: Chemical 2020, 320, 128365. doi:10.1016/j.snb.2020.128365
  • Malik, R.; Tomer, V. K.; Mishra, Y. K.; Lin, L. Functional gas sensing nanomaterials: A panoramic view. Applied Physics Reviews 2020, 7, 021301. doi:10.1063/1.5123479
  • Li, M.; Luo, J.; Fu, C.; Kan, H.; Huang, Z.; Huang, W.; Yang, S.; Jianbing, Z.; Tang, J.; Fu, Y. Q.; Li, H.; Liu, H. PbSe quantum dots-based chemiresistors for room-temperature NO2 detection. Sensors and Actuators B: Chemical 2018, 256, 1045–1056. doi:10.1016/j.snb.2017.10.047
  • Zhao, Y.; Ikram, M.; Wang, J.; Liu, Z.; Du, L.; Zhou, J.; Kan, K.; Zhang, W.; Li, L.; Shi, K. Ultrafast NH3 Sensing Properties of WO3@CoWO4 Heterojunction Nanofibres at Room Temperature. Australian Journal of Chemistry 2018, 71, 87–94. doi:10.1071/ch17354
  • Vasumathi, R.; Lalithambika, K. C.; Balamurugan, D.; Thayumanavan, A.; Neelamegam, P.; Sriram, S. Adsorption effect of $$\mathrm{SO}_{2}$$ SO 2 and $$\mathrm{CO}_{2}$$ CO 2 gas molecules on ZnSe nanotube devices: first principles analysis. Journal of Computational Electronics 2017, 17, 304–312. doi:10.1007/s10825-017-1091-7
  • Kan, H.; Li, M.; Song, Z.; Liu, S.; Zhang, B.; Liu, J.; Li, M.-Y.; Zhang, G.; Jiang, S.; Liu, H. Highly sensitive response of solution-processed bismuth sulfide nanobelts for room-temperature nitrogen dioxide detection. Journal of colloid and interface science 2017, 506, 102–110. doi:10.1016/j.jcis.2017.07.012
  • Natarajan, P.; Venkatraman, U.; Andrews, N. G. Overhead projector sheets as substrate for deposition of one-dimensional tin dioxide nanostructures for use as a chemoresistive sensor for hydrogen. Microchimica Acta 2017, 184, 3153–3161. doi:10.1007/s00604-017-2329-6
  • Zhang, Q.; Li, H.; Ma, Y.; Zhai, T. ZnSe nanostructures: Synthesis, properties and applications. Progress in Materials Science 2016, 83, 472–535. doi:10.1016/j.pmatsci.2016.07.005
  • Yadav, K.; Gahlaut, S. K.; Mehta, B. R.; Singh, J. P. Photoluminescence based H2 and O2 gas sensing by ZnO nanowires. Applied Physics Letters 2016, 108, 071602. doi:10.1063/1.4942092
  • Betty, C. A.; Choudhury, S.; Arora, S. Tin oxide–polyaniline heterostructure sensors for highly sensitive and selective detection of toxic gases at room temperature. Sensors and Actuators B: Chemical 2015, 220, 288–294. doi:10.1016/j.snb.2015.05.074
Other Beilstein-Institut Open Science Activities