Cite the Following Article
Fabrication of carbon nanomembranes by helium ion beam lithography
Xianghui Zhang, Henning Vieker, André Beyer and Armin Gölzhäuser
Beilstein J. Nanotechnol. 2014, 5, 188–194.
https://doi.org/10.3762/bjnano.5.20
How to Cite
Zhang, X.; Vieker, H.; Beyer, A.; Gölzhäuser, A. Beilstein J. Nanotechnol. 2014, 5, 188–194. doi:10.3762/bjnano.5.20
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Stohmann, P.; Koch, S.; Yang, Y.; Kaiser, C. D.; Ehrens, J.; Schnack, J.; Biere, N.; Anselmetti, D.; Gölzhäuser, A.; Zhang, X. Investigation of electron-induced cross-linking of self-assembled monolayers by scanning tunneling microscopy. Beilstein journal of nanotechnology 2022, 13, 462–471. doi:10.3762/bjnano.13.39
- Allen, F. I. A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope. Beilstein journal of nanotechnology 2021, 12, 633–664. doi:10.3762/bjnano.12.52
- Ciganė, U.; Palevicius, A.; Janusas, G. Review of nanomembranes: materials, fabrications and applications in tissue engineering (bone and skin) and drug delivery systems. Journal of Materials Science 2021, 56, 13479–13498. doi:10.1007/s10853-021-06164-x
- Neumann, C.; Wilhelm, R. A.; Küllmer, M.; Turchanin, A. Low-energy electron irradiation induced synthesis of molecular nanosheets: influence of the electron beam energy. Faraday discussions 2020, 227, 61–79. doi:10.1039/c9fd00119k
- Ferreiro-Vila, E.; Bugallo, D.; Magén, C.; Rivadulla, F.; de Teresa, J. M. Topotactic transformation in SrFeO3−δ triggered by low-dose Ga+ focused ion irradiation. Applied Physics Letters 2020, 116, 163103. doi:10.1063/1.5141154
- Backes, C.; Abdelkader, A. M.; Alonso, C.; Andrieux-Ledier, A.; Arenal, R.; Azpeitia, J.; Balakrishnan, N.; Banszerus, L.; Barjon, J.; Bartali, R.; Bellani, S.; Berger, C.; Berger, R.; Ortega, M. B.; Bernard, C.; Beton, P. H.; Beyer, A.; Bianco, A.; Bøggild, P.; Bonaccorso, F.; Barin, G. B.; Botas, C.; Bueno, R. A.; Carriazo, D.; Castellanos-Gomez, A.; Christian, M.; Ciesielski, A.; Ciuk, T.; Cole, M. T.; Coleman, J. N.; Coletti, C.; Crema, L.; Cun, H.; Dasler, D.; De Fazio, D.; Díez, N.; Drieschner, S.; Duesberg, G. S.; Fasel, R.; Feng, X.; Fina, A.; Forti, S.; Galiotis, C.; Garberoglio, G.; Garcia, J. M.; Garrido, J. A.; Gibertini, M.; Gölzhäuser, A.; Gómez, J.; Greber, T.; Hauke, F.; Hemmi, A.; Hernández-Rodríguez, I.; Hirsch, A.; Hodge, S. A.; Huttel, Y.; Jepsen, P. U.; Jimenez, I.; Kaiser, U.; Kaplas, T.; Kim, H.; Kis, A.; Papagelis, K.; Kostarelos, K.; Krajewska, A.; Lee, K.; Li, C.; Lipsanen, H.; Liscio, A.; Lohe, M. R.; Loiseau, A.; Lombardi, L.; López, M. F.; Martin, O.; Martín, C.; Martínez, L.; Martín-Gago, J. A.; Martínez, J. I.; Marzari, N.; Mayoral, A.; McManus, J. B.; Melucci, M.; Méndez, J.; Merino, C.; Merino, P.; Meyer, A.; Miniussi, E.; Miseikis, V.; Mishra, N.; Morandi, V.; Munuera, C.; Muñoz, R.; Nolan, H.; Ortolani, L.; Ott, A. K.; Palacio, I.; Palermo, V.; Parthenios, J.; Pasternak, I.; Patanè, A.; Prato, M.; Prevost, H.; Prudkovskiy, V.; Pugno, N. M.; Rojo, T.; Rossi, A.; Ruffieux, P.; Samorì, P.; Schué, L.; Setijadi, E. J.; Seyller, T.; Speranza, G.; Stampfer, C.; Stenger, I.; Strupinski, W.; Svirko, Y.; Taioli, S.; Teo, K. B. K.; Testi, M.; Tomarchio, F.; Tortello, M.; Treossi, E.; Turchanin, A.; Vázquez, E.; Villaro, E.; Whelan, P. R.; Xia, Z.; Yakimova, R.; Yang, S.; Yazdi, G. R.; Yim, C.; Yoon, D.; Zhang, X.; Zhuang, X.; Colombo, L.; Ferrari, A. C.; García-Hernández, M. Production and processing of graphene and related materials. 2D Materials 2020, 7, 022001–022282. doi:10.1088/2053-1583/ab1e0a
- de Teresa, J. M.; Orús, P.; Córdoba, R.; Philipp, P. Comparison between Focused Electron/Ion Beam-Induced Deposition at Room Temperature and under Cryogenic Conditions. Micromachines 2019, 10, 799. doi:10.3390/mi10120799
- Hartl, H.; East, C. P.; Xu, Y.; Yambem, S. D.; Fairfull-Smith, K. E.; MacLeod, J. Direct-write crosslinking in vacuum-deposited small-molecule films using focussed ion and electron beams. Nanotechnology 2019, 30, 335301. doi:10.1088/1361-6528/ab1b86
- Bassim, N.; Notte, J. A. Focused Ion Beam Instruments. Materials Characterization; ASM International, 2019; pp 635–670. doi:10.31399/asm.hb.v10.a0006677
- Zhang, X.; Marschewski, E.; Penner, P.; Weimann, T.; Hinze, P.; Beyer, A.; Gölzhäuser, A. Large-Area All-Carbon Nanocapacitors from Graphene and Carbon Nanomembranes. ACS nano 2018, 12, 10301–10309. doi:10.1021/acsnano.8b05490
- Zhang, X.; Mainka, M.; Paneff, F.; Hachmeister, H.; Beyer, A.; Gölzhäuser, A.; Huser, T. R. Surface-Enhanced Raman Spectroscopy of Carbon Nanomembranes from Aromatic Self-Assembled Monolayers. Langmuir : the ACS journal of surfaces and colloids 2018, 34, 2692–2698. doi:10.1021/acs.langmuir.7b03956
- Koch, S.; Kaiser, C. D.; Penner, P.; Barclay, M.; Frommeyer, L.; Emmrich, D.; Stohmann, P.; Abu-Husein, T.; Terfort, A.; Fairbrother, D. H.; Ingólfsson, O.; Gölzhäuser, A. Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes. Beilstein journal of nanotechnology 2017, 8, 2562–2571. doi:10.3762/bjnano.8.256
- Turchanin, A. Graphene Growth by Conversion of Aromatic Self-Assembled Monolayers. Annalen der Physik 2017, 529, 1700168. doi:10.1002/andp.201700168
- Zhang, X.; Marschewski, E.; Penner, P.; Beyer, A.; Gölzhäuser, A. Investigation of electronic transport through ultrathin carbon nanomembrane junctions by conductive probe atomic force microscopy and eutectic Ga–In top contacts. Journal of Applied Physics 2017, 122, 055103. doi:10.1063/1.4995533
- Stanford, M. G.; Lewis, B. B.; Mahady, K.; Fowlkes, J. D.; Rack, P. D. Review Article: Advanced nanoscale patterning and material synthesis with gas field helium and neon ion beams. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 2017, 35, 030802. doi:10.1116/1.4981016
- Gölzhäuser, A. Helium Ion Microscopy of Carbon Nanomembranes. NanoScience and Technology 2016, 18, 225–244. doi:10.1007/978-3-319-41990-9_10
- Turchanin, A.; Gölzhäuser, A. Carbon Nanomembranes. Advanced materials (Deerfield Beach, Fla.) 2016, 28, 6075–6103. doi:10.1002/adma.201506058
- Huth, M.; Gölzhäuser, A. Focused particle beam-induced processing. Beilstein journal of nanotechnology 2015, 6, 1883–1885. doi:10.3762/bjnano.6.191
- Petrov, Y. V.; Vyvenko, O. Scanning reflection ion microscopy in a helium ion microscope. Beilstein journal of nanotechnology 2015, 6, 1125–1137. doi:10.3762/bjnano.6.114
- Jeyachandran, Y. L.; Meyerbröker, N.; Terfort, A.; Zharnikov, M. Maskless Ultraviolet Projection Lithography with a Biorepelling Monomolecular Resist. The Journal of Physical Chemistry C 2014, 119, 494–501. doi:10.1021/jp510809a
Patents
- REBOHLE LARS; FISCHER CORNELIUS; SKORUPA ILONA; SCHMIDT HEIDEMARIE; KRÜGER STEPHAN; BLASCHKE DANIEL. DEVICE FOR THE TARGETED ARRANGING OF ELECTRICALLY POLARISABLE MATERIALS DISSOLVED IN AN ANALYTE, METHOD FOR DETERMINING AN ISOELECTRIC POINT OF AN ELECTRICALLY INSULATING MATERIAL, METHOD FOR THE TARGETED ARRANGING OF AN ELECTRICALLY POLARISABLE MATERIAL DISSOLVED IN AN ANALYTE. WO 2021144399 A2, July 22, 2021.