Supporting Information
Supporting Information features additional simulation data, namely the surface response of Linear Kelvin–Voigt samples and its dependency on its dissipation coefficient, the creep simulation of a SLS sample, and the comparison between the force–distance curves of the SLS and the Nafion model.
Supporting Information File 1: Additional simulation data. | ||
Format: PDF | Size: 305.5 KB | Download |
Cite the Following Article
Modeling viscoelasticity through spring–dashpot models in intermittent-contact atomic force microscopy
Enrique A. López-Guerra and Santiago D. Solares
Beilstein J. Nanotechnol. 2014, 5, 2149–2163.
https://doi.org/10.3762/bjnano.5.224
How to Cite
López-Guerra, E. A.; Solares, S. D. Beilstein J. Nanotechnol. 2014, 5, 2149–2163. doi:10.3762/bjnano.5.224
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Tosini, M.; Tänzer, T.; Villata, S.; Baruffaldi, D.; Monica, V.; Peracino, B.; Primo, L.; Frascella, F.; Pirri, F.; Audenino, A.; Massai, D.; Serino, G. A Methodological Approach for Interpreting and Comparing the Viscoelastic Behaviors of Soft Biological Tissues and Hydrogels at the Cell-Length Scale. Applied Sciences 2024, 14, 1093. doi:10.3390/app14031093
- Samarathunga, S. M. B. P. B.; Valori, M.; Faglia, R.; Fassi, I.; Legnani, G. Considerations on the Dynamics of Biofidelic Sensors in the Assessment of Human–Robot Impacts. Machines 2023, 12, 26. doi:10.3390/machines12010026
- Sabri, E.; Brosseau, C. Electromechanical interactions between cell membrane and nuclear envelope: Beyond the standard Schwan's model of biological cells. Bioelectrochemistry (Amsterdam, Netherlands) 2023, 155, 108583. doi:10.1016/j.bioelechem.2023.108583
- YILMAZYURT, M. M.; EYÜPREİSOĞLU, S.; OKYAR, A. F.; NAMLI, O. C. Viscoelastic Characterization and Mechanical Hystheresis of Commercial Grade Polypropylene. Politeknik Dergisi 2023, 26, 1121–1130. doi:10.2339/politeknik.904719
- Tsai, C.-P.; Li, W.-C. Micromechanical vibro-impact systems: a review. Journal of Micromechanics and Microengineering 2023, 33, 93001–093001. doi:10.1088/1361-6439/ace6ae
- Damircheli, M.; Jung, U.; Wagner, R. The effect of sample viscoelastic properties and cantilever amplitudes on maximum repulsive force, indentation, and energy dissipation in bimodal AFM. Physica Scripta 2023, 98, 35708–035708. doi:10.1088/1402-4896/acb973
- McCraw, M. R.; Uluutku, B.; Solomon, H. D.; Anderson, M. S.; Sarkar, K.; Solares, S. D. Optimizing the accuracy of viscoelastic characterization with AFM force-distance experiments in the time and frequency domains. Soft matter 2023, 19, 451–467. doi:10.1039/d2sm01331b
- Schlosser, J.; Keller, M.; Fouladi, K.; Eslami, B. Strengthening Polylactic Acid by Salification: Surface Characterization Study. Polymers 2023, 15, 492. doi:10.3390/polym15030492
- de Jongh, Q.; Kuppuswamy, R.; Titus, M. Spring-dashpot vibrational model for the investigation of viscoelasticity in gelatinous abrasive media and subsequent control of parameters for the blast polishing of Ti-6Al-4 V alloy. The International Journal of Advanced Manufacturing Technology 2022, 121, 7677–7695. doi:10.1007/s00170-022-09863-0
- Jafarbeglou, F.; Nazari, M. A.; Iravanimanesh, S.; Amanpour, S.; Keikha, F.; Rinaudo, P.; Azadi, M. Micro-scale probing of the Rat's oviduct detects its viscoelastic property needed for creating a biologically relevant substrate for In-Vitro- Fertilization. Progress in biophysics and molecular biology 2022, 176, 16–24. doi:10.1016/j.pbiomolbio.2022.07.003
- Abuhattum, S.; Mokbel, D.; Müller, P.; Soteriou, D.; Guck, J.; Aland, S. An explicit model to extract viscoelastic properties of cells from AFM force-indentation curves. iScience 2022, 25, 104016. doi:10.1016/j.isci.2022.104016
- Parvini, C. H.; Cartagena-Rivera, A. X.; Solares, S. D. Viscoelastic parameterization of human skin cells characterize material behavior at multiple timescales. Communications biology 2022, 5, 17. doi:10.1038/s42003-021-02959-5
- Siko, V.
- McCraw, M.; Uluutku, B.; Solares, S. D. Linear Viscoelasticity: Review of Theory and Applications in Atomic Force Microscopy. Reports in Mechanical Engineering 2021, 2, 156–179. doi:10.31181/rme200102156m
- Parvini, C. H.; Cartagena-Rivera, A. X.; Solares, S. D. Viscoelastic Parameterization of Human Skin Cells to Characterize Material Behavior at Multiple Timescales. Cold Spring Harbor Laboratory 2021. doi:10.1101/2021.07.09.451793
- Prouvé, E.; Drouin, B.; Chevallier, P.; Rémy, M.; Durrieu, M.-C.; Laroche, G. Evaluating Poly(Acrylamide-co-Acrylic Acid) Hydrogels Stress Relaxation to Direct the Osteogenic Differentiation of Mesenchymal Stem Cells. Macromolecular bioscience 2021, 21, 2100069. doi:10.1002/mabi.202100069
- Parvini, C. H.; Saadi, M. A. S. R.; Solares, S. D. Correction: Extracting viscoelastic material parameters using an atomic force microscope and static force spectroscopy. Beilstein journal of nanotechnology 2021, 12, 137–138. doi:10.3762/bjnano.12.10
- Amiri, M.; Ghomsheh, F. T.; Ghazalian, F. Modeling the resistance mechanism of passive knee joint flexion and extension for use in rehabilitation equipment. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine 2021, 235, 470–479. doi:10.1177/0954411921990133
- Abuhattum, S.; Mokbel, D.; Müller, P.; Soteriou, D.; Guck, J.; Aland, S. An Explicit Model to Extract Viscoelastic Properties of Cells From AFM Force-Indentation Curves. SSRN Electronic Journal 2021. doi:10.2139/ssrn.3951495
- Mierke, C. T. The Cell Nucleus and Its Compartments. Biological and Medical Physics, Biomedical Engineering; Springer International Publishing, 2020; pp 333–414. doi:10.1007/978-3-030-58532-7_10