Advances in NO2 sensing with individual single-walled carbon nanotube transistors

Kiran Chikkadi, Matthias Muoth, Cosmin Roman, Miroslav Haluska and Christofer Hierold
Beilstein J. Nanotechnol. 2014, 5, 2179–2191. https://doi.org/10.3762/bjnano.5.227

Cite the Following Article

Advances in NO2 sensing with individual single-walled carbon nanotube transistors
Kiran Chikkadi, Matthias Muoth, Cosmin Roman, Miroslav Haluska and Christofer Hierold
Beilstein J. Nanotechnol. 2014, 5, 2179–2191. https://doi.org/10.3762/bjnano.5.227

How to Cite

Chikkadi, K.; Muoth, M.; Roman, C.; Haluska, M.; Hierold, C. Beilstein J. Nanotechnol. 2014, 5, 2179–2191. doi:10.3762/bjnano.5.227

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Ghawanmeh, A. A.; A.Tanash, S.; Al-Rawashdeh, N. A. F.; Albiss, B. The recent progress on nanomaterial-based chemosensors for diagnosis of human exhaled breath: a review. Journal of Materials Science 2024, 59, 8573–8605. doi:10.1007/s10853-024-09680-8
  • Zamansky, K. K.; Osipova, A. A.; Fedorov, F. S.; Kopylova, D. S.; Shunaev, V.; Alekseeva, A.; Glukhova, O. E.; Nasibulin, A. G. Sensitivity enhancement of SWCNT gas sensors by nitrogen plasma treatment. Applied Surface Science 2023, 640, 158334. doi:10.1016/j.apsusc.2023.158334
  • Zhou, X.; Qi, M.; Li, K.; Xue, Z.; Wang, T. Gas sensors based on nanoparticle-assembled interfaces and their application in breath detection of lung cancer. Cell Reports Physical Science 2023, 4, 101678. doi:10.1016/j.xcrp.2023.101678
  • Abdel-Karim, R. Advanced Approaches in Micro- and Nano-sensors for Harsh Environmental Applications: A Review. Modern Nanotechnology; Springer International Publishing, 2023; pp 585–612. doi:10.1007/978-3-031-31111-6_23
  • Carapezzi, S.; Boschetto, G.; Todri-Sanial, A. Capillary-force-driven self-assembly of carbon nanotubes: from ab initio calculations to modeling of self-assembly. Nanoscale advances 2022, 4, 4131–4137. doi:10.1039/d2na00295g
  • Guo, S.-Y.; Hou, P.-X.; Zhang, F.; Liu, C.; Cheng, H.-M. Gas Sensors Based on Single-Wall Carbon Nanotubes. Molecules (Basel, Switzerland) 2022, 27, 5381. doi:10.3390/molecules27175381
  • Nedelcu, S.; Thodkar, K.; Hierold, C. A customizable, low-power, wireless, embedded sensing platform for resistive nanoscale sensors. Microsystems & nanoengineering 2022, 8, 10. doi:10.1038/s41378-021-00343-1
  • Sim, D.; Brothers, M. C.; Slocik, J. M.; Islam, A. E.; Maruyama, B.; Grigsby, C. C.; Naik, R. R.; Kim, S. S. Biomarkers and Detection Platforms for Human Health and Performance Monitoring: A Review. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2022, 9, e2104426. doi:10.1002/advs.202104426
  • Ruiz, E.; Gueye, T.; Masson, C.; Varenne, C.; Pauly, A.; Brunet, J.; Ndiaye, A. L. Macrocycle-Functionalized RGO for Gas Sensors for BTX Detection Using a Double Transduction Mode. Chemosensors 2021, 9, 346. doi:10.3390/chemosensors9120346
  • Tabata, H.; Matsuyama, H.; Goto, T.; Kubo, O.; Katayama, M. Visible-Light-Activated Response Originating from Carrier-Mobility Modulation of NO2 Gas Sensors Based on MoS2 Monolayers. ACS nano 2021, 15, 2542–2553. doi:10.1021/acsnano.0c06996
  • Nedelcu, S.; Eberle, S.; Roman, C.; Hierold, C. An Embedded, Low-Power, Wireless NO2 Gas-Sensing Platform Based on a Single-Walled Carbon Nanotube Transducer. In 4th International Conference nanoFIS 2020 - Functional Integrated nanoSystems, MDPI, 2020; pp 6 ff. doi:10.3390/proceedings2020056006
  • Carapezzi, S.; Reggiani, S.; Gnani, E.; Gnudi, A. TCAD Simulation Framework of Gas Desorption in CNT FET NO 2 Sensors. IEEE Transactions on Electron Devices 2020, 67, 4682–4686. doi:10.1109/ted.2020.3021995
  • Hankins, A.; Willard, T. C.; Liu, A. Y.; Paranjape, M. Role of defects in the sensing mechanism of CNTFET gas sensors. Journal of Applied Physics 2020, 128, 084501. doi:10.1063/5.0014951
  • Ahmad, Z.; Naseem; Manzoor, S.; Talib, M.; Islam, S. S.; Mishra, P. Self-standing MWCNTs based gas sensor for detection of environmental limit of CO2. Materials Science and Engineering: B 2020, 255, 114528. doi:10.1016/j.mseb.2020.114528
  • Zhou, X.; Xue, Z.; Chen, X.-Y.; Huang, C.; Bai, W.; Lu, Z.; Wang, T. Nanomaterial-based gas sensors used for breath diagnosis. Journal of materials chemistry. B 2020, 8, 3231–3248. doi:10.1039/c9tb02518a
  • Dehghani, S. Numerical Study of Long Channel Carbon Nanotube Based Transistors by Considering Variation in CNT Diameter. Journal of Nano Research 2020, 61, 78–87. doi:10.4028/www.scientific.net/jnanor.61.78
  • Sacco, L.; Forel, S.; Florea, I.; Cojocaru, C. S. Ultra-sensitive NO2 gas sensors based on single-wall carbon nanotube field effect transistors: Monitoring from ppm to ppb level. Carbon 2020, 157, 631–639. doi:10.1016/j.carbon.2019.10.073
  • Chauhan, S. S.; Kumar, D.; Chaturvedi, P.; Rahman, M. R. Highly Sensitive and Stable NO 2 Gas Sensors Based on SWNTs With Exceptional Recovery Time. IEEE Sensors Journal 2019, 19, 11775–11783. doi:10.1109/jsen.2019.2937506
  • Behera, B.; Joshi, R.; Vishnu, G. K. A.; Bhalerao, S.; Pandya, H. J. Electronic nose: a non-invasive technology for breath analysis of diabetes and lung cancer patients. Journal of breath research 2019, 13, 024001. doi:10.1088/1752-7163/aafc77
  • Hoque, E.; Chowdhury, T.; Kruse, P. Chemical in situ modulation of doping interactions between oligoanilines and nanocarbon films. Surface Science 2018, 676, 61–70. doi:10.1016/j.susc.2018.01.003
Other Beilstein-Institut Open Science Activities