Inorganic Janus particles for biomedical applications

Isabel Schick, Steffen Lorenz, Dominik Gehrig, Stefan Tenzer, Wiebke Storck, Karl Fischer, Dennis Strand, Frédéric Laquai and Wolfgang Tremel
Beilstein J. Nanotechnol. 2014, 5, 2346–2362. https://doi.org/10.3762/bjnano.5.244

Cite the Following Article

Inorganic Janus particles for biomedical applications
Isabel Schick, Steffen Lorenz, Dominik Gehrig, Stefan Tenzer, Wiebke Storck, Karl Fischer, Dennis Strand, Frédéric Laquai and Wolfgang Tremel
Beilstein J. Nanotechnol. 2014, 5, 2346–2362. https://doi.org/10.3762/bjnano.5.244

How to Cite

Schick, I.; Lorenz, S.; Gehrig, D.; Tenzer, S.; Storck, W.; Fischer, K.; Strand, D.; Laquai, F.; Tremel, W. Beilstein J. Nanotechnol. 2014, 5, 2346–2362. doi:10.3762/bjnano.5.244

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Dehdari, M.; Jazi, B.; Khosravi, F. A Theoretical Explanation for the Existence of Certain Maxima in the Visible Spectrum Pattern of Wave Scattering from Spherical Metal-Dielectric-Janus Nanoparticles Based on Surface Plasmon Excitation. Plasmonics 2024. doi:10.1007/s11468-024-02447-6
  • Gao, Z.; Wu, H.; He, Y.; Xiong, K. 2D Janus TeMoZAZ' (A = Si,Ge; Z,Z' = N, P, As; Z ≠ Z'): First‐Principles Insight into the Electronics, and Piezoelectric Properties. Advanced Theory and Simulations 2024, 7. doi:10.1002/adts.202400466
  • Wenderich, K.; Zhu, K.; Bu, Y.; Tichelaar, F. D.; Mul, G.; Huijser, A. Photophysical Characterization of Ru Nanoclusters on Nanostructured TiO2 by Time-Resolved Photoluminescence Spectroscopy. The journal of physical chemistry. C, Nanomaterials and interfaces 2023, 127, 14353–14362. doi:10.1021/acs.jpcc.3c04075
  • Madadi, M.; Khoee, S. Magnetite-based Janus nanoparticles, their synthesis and biomedical applications. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology 2023, 15, e1908. doi:10.1002/wnan.1908
  • Lizunova, A. A.; Borisov, V. I.; Malo, D.; Musaev, A. G.; Kameneva, E. I.; Efimov, A. A.; Volkov, I. A.; Buchnev, A. I.; Shuklov, I. A.; Ivanov, V. V. Spark Discharge Synthesis and Characterization of Ge/Sn Janus Nanoparticles. Nanomaterials (Basel, Switzerland) 2023, 13, 1701. doi:10.3390/nano13101701
  • Ashraf, M.; Ullah, N.; Khan, I.; Tremel, W.; Ahmad, S.; Tahir, M. N. Photoreforming of Waste Polymers for Sustainable Hydrogen Fuel and Chemicals Feedstock: Waste to Energy. Chemical reviews 2023, 123, 4443–4509. doi:10.1021/acs.chemrev.2c00602
  • Qi, C.; Yan, C.; Li, Q.; Yang, T.; Qiu, S.; Cai, J. Two-dimensional Janus monolayers Al2XYZ (X/Y/Z = S, Se, Te, X ≠ Y ≠ Z): first-principles insight into the photocatalytic and highly adjustable piezoelectric properties. Journal of Materials Chemistry C 2023, 11, 3262–3274. doi:10.1039/d2tc04939b
  • Tan, K. X.; Danquah, M. K.; Jeevanandam, J.; Barhoum, A. Development of Janus Particles as Potential Drug Delivery Systems for Diabetes Treatment and Antimicrobial Applications. Pharmaceutics 2023, 15, 423. doi:10.3390/pharmaceutics15020423
  • Nikezić, A. V.; Novaković, J. G. Nano/Microcarriers in Drug Delivery: Moving the Timeline to Contemporary. Current medicinal chemistry 2023, 30, 2996–3023. doi:10.2174/0929867329666220821193938
  • Sui, N. L. D.; Lee, J.-M. Versatile Janus Architecture for Electrocatalytic Applications. Small (Weinheim an der Bergstrasse, Germany) 2022, 19, e2205940. doi:10.1002/smll.202205940
  • Gupta, S. P.; Hasnain, S. M.; Jaiswar, R.; Late, D. J.; Walke, P. S. Analytical Techniques for the Wettability and Contact Angle. Advanced Analytical Techniques for Characterization of 2D Materials; AIP Publishing LLCMelville, New York, 2022; pp 9–1-9-22. doi:10.1063/9780735425422_009
  • Ghahramani, Y.; Mokhberi, M.; Mousavi, S. M.; Hashemi, S. A.; Fallahi Nezhad, F.; Chiang, W.-H.; Gholami, A.; Lai, C. W. Synergistically Enhancing the Therapeutic Effect on Cancer, via Asymmetric Bioinspired Materials. Molecules (Basel, Switzerland) 2022, 27, 8543. doi:10.3390/molecules27238543
  • Wang, Y.; Zhao, P.; Zhang, S.; Zhu, K.; Shangguan, X.; Liu, L.; Zhang, S. Application of Janus Particles in Point-of-Care Testing. Biosensors 2022, 12, 689. doi:10.3390/bios12090689
  • Vafaeezadeh, M.; Thiel, W. R. Aufgabenspezifische Janus‐Materialien in der heterogenen Katalyse. Angewandte Chemie 2022, 134. doi:10.1002/ange.202206403
  • Vafaeezadeh, M.; Thiel, W. R. Task-Specific Janus Materials in Heterogeneous Catalysis. Angewandte Chemie (International ed. in English) 2022, 61, e202206403. doi:10.1002/anie.202206403
  • Zhang, H.; Wang, F.; Nestler, B. Janus Droplet Formation via Thermally Induced Phase Separation: A Numerical Model with Diffusion and Convection. Langmuir : the ACS journal of surfaces and colloids 2022, 38, 6882–6895. doi:10.1021/acs.langmuir.2c00308
  • Nobile, C.; Cozzoli, P. D. Synthetic Approaches to Colloidal Nanocrystal Heterostructures Based on Metal and Metal-Oxide Materials. Nanomaterials (Basel, Switzerland) 2022, 12, 1729. doi:10.3390/nano12101729
  • Zhang, N.; Zhao, G.; Gao, F.; Wang, Y.; Wang, W.; Bai, L.; Chen, H.; Yang, H.; Yang, L. Wearable Flexible Sensors for Human Motion Detection with Self-Healing, Tough Guar Gum-Hydrogels of GO-P4VPBA/PDA Janus Nanosheets. ACS Applied Polymer Materials 2022, 4, 3394–3407. doi:10.1021/acsapm.2c00028
  • Haas, K.-H. Metal Oxide Nanoparticles; Wiley, 2021; pp 29–65. doi:10.1002/9781119436782.ch2
  • Mourdikoudis, S.; Kostopoulou, A.; LaGrow, A. P. Magnetic Nanoparticle Composites: Synergistic Effects and Applications. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2021, 8, 2004951. doi:10.1002/advs.202004951
Other Beilstein-Institut Open Science Activities