Intake of silica nanoparticles by giant lipid vesicles: influence of particle size and thermodynamic membrane state

Florian G. Strobl, Florian Seitz, Christoph Westerhausen, Armin Reller, Adriano A. Torrano, Christoph Bräuchle, Achim Wixforth and Matthias F. Schneider
Beilstein J. Nanotechnol. 2014, 5, 2468–2478. https://doi.org/10.3762/bjnano.5.256

Cite the Following Article

Intake of silica nanoparticles by giant lipid vesicles: influence of particle size and thermodynamic membrane state
Florian G. Strobl, Florian Seitz, Christoph Westerhausen, Armin Reller, Adriano A. Torrano, Christoph Bräuchle, Achim Wixforth and Matthias F. Schneider
Beilstein J. Nanotechnol. 2014, 5, 2468–2478. https://doi.org/10.3762/bjnano.5.256

How to Cite

Strobl, F. G.; Seitz, F.; Westerhausen, C.; Reller, A.; Torrano, A. A.; Bräuchle, C.; Wixforth, A.; Schneider, M. F. Beilstein J. Nanotechnol. 2014, 5, 2468–2478. doi:10.3762/bjnano.5.256

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Sirch, M. M.; Kamenac, A.; Neidinger, S. V.; Wixforth, A.; Westerhausen, C. Phase-State-Dependent Silica Nanoparticle Uptake of Giant Unilamellar Vesicles. The journal of physical chemistry. B 2024, 128, 7172–7179. doi:10.1021/acs.jpcb.4c02383
  • Dehne, M.; Neidinger, S. V.; Stark, M.; Adamo, A. C.; Kraus, X.; Färber, N.; Westerhausen, C.; Bahnemann, J. Microfluidic Transfection System and Temperature Strongly Influence the Efficiency of Transient Transfection. ACS omega 2024, 9, 21637–21646. doi:10.1021/acsomega.4c02590
  • Moniruzzaman, M.; Karal, M. A. S.; Wadud, M. A.; Rashid, M. M. O. Increase in anionic Fe3O4 nanoparticle-induced membrane poration and vesicle deformation due to membrane potential - an experimental study. Physical chemistry chemical physics : PCCP 2023, 25, 23111–23124. doi:10.1039/d3cp02702c
  • Liu, X.; Auth, T.; Hazra, N.; Ebbesen, M. F.; Brewer, J.; Gompper, G.; Crassous, J. J.; Sparr, E. Wrapping anisotropic microgel particles in lipid membranes: Effects of particle shape and membrane rigidity. Proceedings of the National Academy of Sciences of the United States of America 2023, 120, e2217534120. doi:10.1073/pnas.2217534120
  • Esteruelas, G.; Ortiz, A.; Prat, J.; Vega, E.; Muñoz-Juncosa, M.; López, M. L. G.; Ettcheto, M.; Camins, A.; Sánchez-López, E.; Pujol, M. Novel customized age-dependent corneal membranes and interactions with biodegradable nanoparticles loaded with dexibuprofen. Colloids and surfaces. B, Biointerfaces 2023, 228, 113394. doi:10.1016/j.colsurfb.2023.113394
  • Perez, M. A.; Beales, P. A. Biomimetic Curvature and Tension-Driven Membrane Fusion Induced by Silica Nanoparticles. Langmuir : the ACS journal of surfaces and colloids 2021, 37, 13917–13931. doi:10.1021/acs.langmuir.1c02492
  • Färber, N.; Westerhausen, C. Broad lipid phase transitions in mammalian cell membranes measured by Laurdan fluorescence spectroscopy. Biochimica et biophysica acta. Biomembranes 2021, 1864, 183794. doi:10.1016/j.bbamem.2021.183794
  • Kamenac, A.; Sirch, M.; Neidinger, S.; Westerhausen, C. Phase-State Dependent Silica Nanoparticle Uptake of Giant Unilamellar Vesicles. Research Square Platform LLC 2021. doi:10.21203/rs.3.rs-754056/v1
  • El-Beyrouthy, J.; Freeman, E. C. Characterizing the Structure and Interactions of Model Lipid Membranes Using Electrophysiology. Membranes 2021, 11, 319. doi:10.3390/membranes11050319
  • Prakash, S.; Kumbhojkar, N.; Clegg, J. R.; Mitragotri, S. Cell-bound nanoparticles for tissue targeting and immunotherapy: Engineering of the particle–membrane interface. Current Opinion in Colloid & Interface Science 2021, 52, 101408. doi:10.1016/j.cocis.2020.101408
  • Arsenault, N. E.; Downey, K. T.; Wolf, M. O. Stimuli-responsive flexible Lewis pair-modified nanoparticles for fluorescence imaging. Chemical communications (Cambridge, England) 2020, 56, 5981–5984. doi:10.1039/d0cc01203c
  • Vasti, C.; Ambroggio, E. E.; Rojas, R.; Giacomelli, C. E. A closer look into the physical interactions between lipid membranes and layered double hydroxide nanoparticles. Colloids and surfaces. B, Biointerfaces 2020, 191, 110998. doi:10.1016/j.colsurfb.2020.110998
  • Kudella, P. W.; Preißinger, K.; Morasch, M.; Dirscherl, C. F.; Braun, D.; Wixforth, A.; Westerhausen, C. Fission of Lipid-Vesicles by Membrane Phase Transitions in Thermal Convection. Scientific reports 2019, 9, 18808. doi:10.1038/s41598-019-55110-0
  • Kostina, N. Y.; Rahimi, K.; Xiao, Q.; Haraszti, T.; Dedisch, S.; Spatz, J. P.; Schwaneberg, U.; Klein, M. L.; Percec, V.; Möller, M.; Rodriguez-Emmenegger, C. Membrane-Mimetic Dendrimersomes Engulf Living Bacteria via Endocytosis. Nano letters 2019, 19, 5732–5738. doi:10.1021/acs.nanolett.9b02349
  • Strobl, F. G.; Czubak, D. M.; Wixforth, A.; Westerhausen, C. Ion controlled passive nanoparticle uptake in lipid vesicles in theory and experiment. Journal of Physics D: Applied Physics 2019, 52, 294001. doi:10.1088/1361-6463/ab1994
  • Deline, A. R.; Nason, J. A. Evaluation of labeling methods used for investigating the environmental behavior and toxicity of metal oxide nanoparticles. Environmental Science: Nano 2019, 6, 1043–1066. doi:10.1039/c8en01187g
  • Wittmann, C. G.; Kamenac, A.; Strobl, F. G.; Czubak, D.; Wixforth, A.; Westerhausen, C. Ionic Strength and the Supporting Material Strongly Influence the Adhesion of Silica to Supported Lipid Bilayers. Advanced Biosystems 2018, 2, 1800087. doi:10.1002/adbi.201800087
  • Schneemilch, M.; Quirke, N. Free energy of adhesion of lipid bilayers on silica surfaces. The Journal of chemical physics 2018, 148, 194704. doi:10.1063/1.5028557
  • Ichikawa, S.; Shimokawa, N.; Takagi, M.; Kitayama, Y.; Takeuchi, T. Size-dependent uptake of electrically neutral amphipathic polymeric nanoparticles by cell-sized liposomes and an insight into their internalization mechanism in living cells. Chemical communications (Cambridge, England) 2018, 54, 4557–4560. doi:10.1039/c8cc00977e
  • Contini, C.; Schneemilch, M.; Gaisford, S.; Quirke, N. Nanoparticle–membrane interactions. Journal of Experimental Nanoscience 2017, 13, 62–81. doi:10.1080/17458080.2017.1413253
Other Beilstein-Institut Open Science Activities