Neutral and charged boron-doped fullerenes for CO2 adsorption

Suchitra W. de Silva, Aijun Du, Wijitha Senadeera and Yuantong Gu
Beilstein J. Nanotechnol. 2014, 5, 413–418. https://doi.org/10.3762/bjnano.5.49

Cite the Following Article

Neutral and charged boron-doped fullerenes for CO2 adsorption
Suchitra W. de Silva, Aijun Du, Wijitha Senadeera and Yuantong Gu
Beilstein J. Nanotechnol. 2014, 5, 413–418. https://doi.org/10.3762/bjnano.5.49

How to Cite

de Silva, S. W.; Du, A.; Senadeera, W.; Gu, Y. Beilstein J. Nanotechnol. 2014, 5, 413–418. doi:10.3762/bjnano.5.49

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Ridassepri, A. F.; Umejima, Y.; Nakamura, J. B-Doped Fullerene as a Potential Metal-Free Catalyst Material for CO Reduction Reaction. The Journal of Physical Chemistry C 2024, 128, 9513–9519. doi:10.1021/acs.jpcc.4c01468
  • Anila, S.; Suresh, C. H. Polyanionic cyano-fullerides for CO2 capture: a DFT prediction. Physical chemistry chemical physics : PCCP 2022, 24, 22144–22153. doi:10.1039/d2cp03464f
  • Wang, P.; Hao, X.; Tang, B.; Abudula, A.; Guan, G. Nanocarbon-based metal-free catalysts. Carbon-Based Metal Free Catalysts; Elsevier, 2022; pp 1–19. doi:10.1016/b978-0-323-88515-7.00006-7
  • Baskar, A. V.; Benzigar, M. R.; Talapaneni, S. N.; Singh, G.; Karakoti, A. S.; Yi, J.; Al-Muhtaseb, A. H.; Ariga, K.; Ajayan, P. M.; Vinu, A. Self-Assembled Fullerene Nanostructures: Synthesis and Applications. Advanced Functional Materials 2021, 32, 2106924. doi:10.1002/adfm.202106924
  • Zhao, C.; Xi, M.; Huo, J.; He, C. B-Doped 2D-InSe as a bifunctional catalyst for CO2/CH4 separation under the regulation of an external electric field. Physical chemistry chemical physics : PCCP 2021, 23, 23219–23224. doi:10.1039/d1cp03943a
  • Qu, M.; Xu, S.; Du, A.; Zhao, C.; Sun, Q. CO2 Capture, Separation and Reduction on Boron-Doped MoS2, MoSe2 and Heterostructures with Different Doping Densities: A Theoretical Study. Chemphyschem : a European journal of chemical physics and physical chemistry 2021, 22, 2392–2400. doi:10.1002/cphc.202100377
  • Bi, H.; Zhang, L.-X.; Xing, Y.; Zhang, P.; Chen, J.; Yin, J.; Bie, L.-J. Morphology-controlled synthesis of CeO2 nanocrystals and their facet-dependent gas sensing properties. Sensors and Actuators B: Chemical 2021, 330, 129374. doi:10.1016/j.snb.2020.129374
  • Abraham, B. M. Adsorption of cyanogen halides (X-CN; X = F, Cl and Br) on pristine and Fe, Mn doped C60: A highly potential gas sensor. Materials Today Communications 2021, 26, 101901. doi:10.1016/j.mtcomm.2020.101901
  • Hassani, N. C20 fullerene and its boron- and nitrogen-doped counterparts as an efficient catalyst for CO oxidation. Molecular Physics 2020, 118, e1766708. doi:10.1080/00268976.2020.1766708
  • Varghese, A. M.; Karanikolos, G. N. CO2 capture adsorbents functionalized by amine – bearing polymers: A review. International Journal of Greenhouse Gas Control 2020, 96, 103005. doi:10.1016/j.ijggc.2020.103005
  • Alver, Ö.; Parlak, C.; Umar, Y.; Ramasami, P. DFT/QTAIM analysis of favipiravir adsorption on pristine and silicon doped C20 fullerenes. Main Group Metal Chemistry 2019, 42, 143–149. doi:10.1515/mgmc-2019-0016
  • Zhang, Z.; Cano, Z. P.; Luo, D.; Dou, H.; Yu, A.; Chen, Z. Rational design of tailored porous carbon-based materials for CO2 capture. Journal of Materials Chemistry A 2019, 7, 20985–21003. doi:10.1039/c9ta07297g
  • Liu, S.; Yang, H.; Su, X.; Ding, J.; Mao, Q.; Huang, Y.; Zhang, T.; Liu, B. Rational design of carbon-based metal-free catalysts for electrochemical carbon dioxide reduction: A review. Journal of Energy Chemistry 2019, 36, 95–105. doi:10.1016/j.jechem.2019.06.013
  • Kaya, M.; Alver, Ö.; Parlak, C.; Ramasami, P. Theoretical insight of alpha amino acid phenylalanine adsorption on pristine and decorated fullerenes. Main Group Metal Chemistry 2019, 42, 135–142. doi:10.1515/mgmc-2019-0015
  • Parey, V.; Jyothirmai, M. V.; Kumar, E. M.; Saha, B.; Gaur, N. K.; Thapa, R. Homonuclear B2/B3 doped carbon allotropes as a universal gas sensor: Possibility of CO oxidation and CO2 hydrogenation. Carbon 2019, 143, 38–50. doi:10.1016/j.carbon.2018.10.060
  • Padole, M. C.; Deshpande, P. A. Structural and electronic properties of chemically modified fullerenes. Molecular Simulation 2019, 45, 623–635. doi:10.1080/08927022.2019.1572892
  • Soltani, A.; Javan, M. B.; Baei, M. T.; Azmoodeh, Z. Adsorption of chemical warfare agents over C24 fullerene: Effects of decoration of cobalt. Journal of Alloys and Compounds 2018, 735, 2148–2161. doi:10.1016/j.jallcom.2017.11.350
  • Qin, G.; Du, A.; Sun, Q. Charge- and Electric-Field-Controlled Switchable Carbon Dioxide Capture and Gas Separation on a C2N Monolayer. Energy Technology 2017, 6, 205–212. doi:10.1002/ente.201700413
  • Merlano, A. S.; Garay, A.; Pérez, F. R.; Salazar, Á. Effect of doping with Al/B on the sensitivity of a metallic carbon nanotube to CO2. Journal of Physics: Conference Series 2017, 850, 012006. doi:10.1088/1742-6596/850/1/012006
  • Baei, M. T.; Taghartapeh, M. R.; Soltani, A.; Amirabadi, K. H.; Gholami, N. Interaction of pure and metal atom substituted carbon nanocages with CNCl: a DFT study. Russian Journal of Physical Chemistry B 2017, 11, 354–360. doi:10.1134/s1990793117020154

Patents

  • WANG QIANG; HUANG LIANG; ZHENG QIANWEN. Carbon dioxide adsorption material and preparation method thereof. CN 108686616 A, Oct 23, 2018.
Other Beilstein-Institut Open Science Activities