Supporting Information
Supporting Information features a schematic illustration of the most important steps in the synthesis process of HGS, Pt@HGS 1–2 nm and Pt@HGS 3–4 nm. TEM images of reference materials, activity data in sulphuric acid, thin-film degradation tests on a commercial Pt/C 1–2 nm catalyst as well as further IL-TEM data are also available together with the derivation of the equation for the average inter-particle distance.
Supporting Information File 1: Further experimental data. | ||
Format: PDF | Size: 929.4 KB | Download |
Cite the Following Article
Design criteria for stable Pt/C fuel cell catalysts
Josef C. Meier, Carolina Galeano, Ioannis Katsounaros, Jonathon Witte, Hans J. Bongard, Angel A. Topalov, Claudio Baldizzone, Stefano Mezzavilla, Ferdi Schüth and Karl J. J. Mayrhofer
Beilstein J. Nanotechnol. 2014, 5, 44–67.
https://doi.org/10.3762/bjnano.5.5
How to Cite
Meier, J. C.; Galeano, C.; Katsounaros, I.; Witte, J.; Bongard, H. J.; Topalov, A. A.; Baldizzone, C.; Mezzavilla, S.; Schüth, F.; Mayrhofer, K. J. J. Beilstein J. Nanotechnol. 2014, 5, 44–67. doi:10.3762/bjnano.5.5
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Imhof, T.; Della Bella, R. K. F.; Paciok, P.; Lauf, P.; Roumeliotis, P.; Gunnarson, A.; Koh, E. S.; Schüth, F.; Cherevko, S.; Heggen, M.; Ledendecker, M. Unravelling the Impact of the Ionomer on the Degradation Mechanisms in Carbon-Supported Platinum Electrocatalysts: On the Path Toward Durable Proton Exchange Membrane Fuel Cells. ACS Catalysis 2025, 8611–8623. doi:10.1021/acscatal.5c01466
- Parnigotto, M.; Dal Sasso, G.; Berretti, E.; Mazzucato, M.; Bertolotti, F.; Lavacchi, A.; Dalconi, M. C.; Gavioli, L.; Durante, C. Pt NPs Supported on CeO2/C as Electrocatalysts for Oxygen Reduction Reaction: Novel Physicochemical Insights on the Synthesis and on the Improved Activity and Stability. Small (Weinheim an der Bergstrasse, Germany) 2025, e2403127. doi:10.1002/smll.202403127
- Kumar, V. B.; Collin, A.; Sankar, M. G.; Subramanian, K. Fuel cell technologies in the automotive sector: A focus on proton exchange membrane and Alkaline fuel cells. Green Technologies and Sustainability 2025, 100218. doi:10.1016/j.grets.2025.100218
- Wilsey, M. K.; Taseska, T.; Schultz, L. R.; Perez, E.; Müller, A. M. Fabrication of Surfactant-Free Mixed-Metal Nanocatalyst–Carbon Fiber Paper Composites via Pulsed Laser Grafting. The Journal of Physical Chemistry C 2025. doi:10.1021/acs.jpcc.5c00641
- Fratarcangeli, M.; Vigil, S. A.; Moreno-Hernandez, I. A. Understanding Electrochemical Degradation via Liquid Phase Transmission Electron Microscopy. The Journal of Physical Chemistry C 2025, 129, 7612–7624. doi:10.1021/acs.jpcc.5c01320
- Arun, M.; Giddey, S.; Joseph, P.; Dhawale, D. S. Challenges and mitigation strategies for general failure and degradation in polymer electrolyte membrane-based fuel cells and electrolysers. Journal of Materials Chemistry A 2025, 13, 11236–11263. doi:10.1039/d4ta08823a
- Song, T.-W.; Yan, J.-J.; Tong, L.; Li, Z.-R.; Ma, C.-S.; Li, J.-J.; Xu, C.; Li, S.; Shao, R.-Y.; Zuo, M.; Zhong, S.-L.; Chu, S.-Q.; Liang, H.-W. Core/Shell-Structured Carbon Support Boosting Fuel Cell Durability. Advanced materials (Deerfield Beach, Fla.) 2025, 37, e2414472. doi:10.1002/adma.202414472
- Tang, Z.; Zhao, D.; Wang, X.; Jiao, Y.; Liu, M.; Liu, C.; Zhang, Q.; Ren, S.; Liu, Y. One-Pot Synthesis of Pd@Pt Core-Shell Icosahedron for Efficient Oxygen Reduction. Materials (Basel, Switzerland) 2025, 18, 1279. doi:10.3390/ma18061279
- Alekseenko, A. A.; Paperzh, K. O.; Pavlets, A. S.; Belenov, S. V.; Moguchikh, E. A.; Nevelskaya, A. K.; Bayan, Y. A.; Danilenko, M. V.; Pankov, I. V.; Guterman, V. E. Enhanced Pt/C and PtCu/C electrocatalysts for improved oxygen reduction reaction in proton-exchange membrane fuel cells. Journal of Materials Science 2025, 60, 5035–5051. doi:10.1007/s10853-025-10757-1
- Alsuhile, A.; Pein, P. S.; Barım, Ş. B.; Bozbağ, S. E.; Smirnova, I.; Erkey, C.; Schroeter, B. Synthesis of Pt Carbon Aerogel Electrocatalysts with Multiscale Porosity Derived from Cellulose and Chitosan Biopolymer Aerogels via Supercritical Deposition for Hydrogen Evolution Reaction. Advanced Energy and Sustainability Research 2025. doi:10.1002/aesr.202400433
- Ke, S.; Zhao, Y.; Min, X.; Zhu, X.; Li, X.; Yang, B.; Yang, F.; Wu, X.; Mi, R.; Liu, Y.; Huang, Z.; Fang, M. Tailoring the d-band center in Pt-based catalysts for hydrogen evolution via transition metals incorporation. International Journal of Hydrogen Energy 2025, 105, 806–816. doi:10.1016/j.ijhydene.2025.01.303
- Kong, F.; Alipour Moghadam Esfahani, R.; Strong, O. K.; Ebralidze, I. I.; Vreugdenhil, A. J.; Easton, E. B. Cu-doped titanium suboxide fuel cell catalyst support prepared by sol-gel method: Unveiling the role of Cu as a lone dopant. Electrochimica Acta 2025, 524, 146067. doi:10.1016/j.electacta.2025.146067
- Park, E.; Lee, E.; Han, J.; Whang, Y.; Kwon, Y.; Kim, N.; An, B.-S.; Jung, N.; Park, G.-G. Temperature-dependent carbon shell engineering for highly durable Pt@C catalysts in the oxygen reduction reaction. Applied Surface Science 2025, 698, 163043. doi:10.1016/j.apsusc.2025.163043
- Danisman, B.; Yang, J.; Zhang, G.; Brummel, O.; Márton Kovács, M.; Dworschak, D.; Steffen, J.; Ledendecker, M.; Görling, A.; Mayrhofer, K. J. J.; Libuda, J.; Etzold, B. J. M. The Influence of Ionic Liquid Modification on the Restructuring of Trimetallic PtNiMo/C Catalysts During Conditioning. ChemElectroChem 2025, 12. doi:10.1002/celc.202400603
- Zheng, H.; Lin, L.; Chen, Z.; Yang, T.-C.; Wang, H.; Jiang, Z.; Bao, C.; Yang, C.-M.; Lai, N.-C. Carbon doped cobalt nanoparticles encapsulated in graphitic carbon shells: Efficient bifunctional oxygen electrocatalysts for ultrastable Zn-air batteries. Journal of colloid and interface science 2025, 686, 624–633. doi:10.1016/j.jcis.2025.01.269
- Gao, Y.; Cao, J.; Chen, C. Electrochemical and microscopic characterization of fuel cell catalyst layer degradation during accelerated stress tests: a review. Journal of Energy Chemistry 2025, 105, 96–111. doi:10.1016/j.jechem.2025.01.047
- Woo, S. M.; Kim, H. S.; Youn, P. J.; Lee, K. R.; Kang, G. M.; You, S.-H.; Lee, K.-S.; Kim, Y.-T.; Yu, S.-H.; Han, J. H.; Yoo, S. J.; Park, I.-K. Reactive metal–support interaction of In2O3/crystalline carbon hybrid support for highly durable and efficient oxygen reduction reaction electrocatalyst. Chemical Engineering Journal 2025, 505, 159586. doi:10.1016/j.cej.2025.159586
- Kim, H.; Kim, M. M.; Cho, J.; Lee, S.; Kim, D. H.; Shin, S.-J.; Utsunomiya, T.; Goddard, W. A.; Katayama, Y.; Kim, H.; Choi, C. H. Cation Effect on the Electrochemical Platinum Dissolution. Journal of the American Chemical Society 2025, 147, 4667–4674. doi:10.1021/jacs.4c17833
- Merzdorf, T.; Hornberger, E.; Ott, S.; Strasser, P. Fuel Cells – Polymer-Electrolyte Membrane Fuel Cell | Cathodes. Encyclopedia of Electrochemical Power Sources; Elsevier, 2025; pp 88–95. doi:10.1016/b978-0-323-96022-9.00158-4
- Hong, K. W.; Kwon, Y. R.; Song, D. K.; Jung, D. Y.; Kang, B. K.; Kwon, S. K.; Ryu, S.; Cho, G. Y. Fabrication and Characterization of Pt-Pr6O11 Nano Cathode Electrode for Polymer Electrolyte Membrane Fuel Cells via Co-Sputtering Method. Sustainability 2024, 17, 198. doi:10.3390/su17010198
Patents
- NESSELBERGER MARKUS; HASCHÉ FRÉDÉRIC; SCHÖFFLER RIANNE; EWEINER FLORIAN; NEUSCHÜTZ MARK. SUPPORTED PLATINUM PARTICLES AND THEIR USE AS CATALYST IN FUEL OR ELECTROLYSIS CELLS. EP 4239732 A2, Sept 6, 2023.
- NESSELBERGER MARKUS; HASCHE FREDERIC; SCHÖFFLER RIANNE; EWEINER FLORIAN; NEUSCHÜTZ MARK. METHOD FOR PRODUCING SUPPORTED PLATINUM PARTICLES. WO 2019081374 A1, May 2, 2019.
- NESSELBERGER MARKUS; HASCHÉ FRÉDÉRIC; SCHÖFFLER RIANNE; EWEINER FLORIAN; NEUSCHÜTZ MARK. METHOD FOR PRODUCING SUPPORTED PLATINUM PARTICLES. EP 3473337 A1, April 24, 2019.