Design criteria for stable Pt/C fuel cell catalysts

Josef C. Meier, Carolina Galeano, Ioannis Katsounaros, Jonathon Witte, Hans J. Bongard, Angel A. Topalov, Claudio Baldizzone, Stefano Mezzavilla, Ferdi Schüth and Karl J. J. Mayrhofer
Beilstein J. Nanotechnol. 2014, 5, 44–67. https://doi.org/10.3762/bjnano.5.5

Supporting Information

Supporting Information features a schematic illustration of the most important steps in the synthesis process of HGS, Pt@HGS 1–2 nm and Pt@HGS 3–4 nm. TEM images of reference materials, activity data in sulphuric acid, thin-film degradation tests on a commercial Pt/C 1–2 nm catalyst as well as further IL-TEM data are also available together with the derivation of the equation for the average inter-particle distance.

Supporting Information File 1: Further experimental data.
Format: PDF Size: 929.4 KB Download

Cite the Following Article

Design criteria for stable Pt/C fuel cell catalysts
Josef C. Meier, Carolina Galeano, Ioannis Katsounaros, Jonathon Witte, Hans J. Bongard, Angel A. Topalov, Claudio Baldizzone, Stefano Mezzavilla, Ferdi Schüth and Karl J. J. Mayrhofer
Beilstein J. Nanotechnol. 2014, 5, 44–67. https://doi.org/10.3762/bjnano.5.5

How to Cite

Meier, J. C.; Galeano, C.; Katsounaros, I.; Witte, J.; Bongard, H. J.; Topalov, A. A.; Baldizzone, C.; Mezzavilla, S.; Schüth, F.; Mayrhofer, K. J. J. Beilstein J. Nanotechnol. 2014, 5, 44–67. doi:10.3762/bjnano.5.5

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Tian, F.; Tao, X.; Wang, J.; Huang, Z.; Tian, W.; Chen, J. Investigation of Cu-doped amorphous carbon film in improving corrosion resistance and interfacial conductivity of proton exchange membrane fuel cell. Surface and Coatings Technology 2024, 485, 130926. doi:10.1016/j.surfcoat.2024.130926
  • Matthews, T.; Gwebu, S. S.; Adekunle, A. S.; Mugadza, K.; Ndungu, P.; Maxakato, N. W.; Zikhali, M. Challenges and Approaches of Nanoelectrocatalysts for Fuel Cell. Environmental Chemistry for a Sustainable World; Springer Nature Switzerland, 2024; pp 157–195. doi:10.1007/978-3-031-55329-5_5
  • Sakurai, S.; Tsuji, T.; He, J.; Yamada, M.; Futaba, D. N. Double-Layer Support Strategy for Enhancing the Lifetime of Fe Catalyst Nanoparticles in Synthesis of Single-Walled Carbon Nanotubes. ACS Applied Nano Materials 2024. doi:10.1021/acsanm.4c01293
  • Ayyubov, I.; Berghian-Grosan, C.; Dodony, E.; Pászti, Z.; Borbáth, I.; Szegedi, A.; Vulcu, A.; Tompos, A.; Tálas, E. Structure – Catalytic Behavior Relationships in TiO 2 -Carbon Composite Supported Pt Electrocatalysts: A Case Study. Analytical Letters 2024, 1–22. doi:10.1080/00032719.2024.2351589
  • Zhang, C.; Cheng, H.; Zhang, J.; Feng, Z.; Liu, D.; Jia, Z.; Liang, Y.; Wang, Y. Effect of Dual Heat Treatment on the Oxygen Reduction Performance of Nanoparticles of Pt on Carbon Catalysts Prepared by Continuous Flow Microwave Technology. ACS Applied Nano Materials 2024, 7, 11475–11486. doi:10.1021/acsanm.4c01090
  • Li, J.; Li, Z.; Li, S.; Xu, C.; Li, A.; Tong, L.; Liang, H. 高温退火提升质子交换膜燃料电池阴极催化剂的铂 利用率. Science China Materials 2024, 67, 1851–1857. doi:10.1007/s40843-024-2871-1
  • Eid, K. Assessing the Intrinsic Activity of Pt‐Group Electrocatalysts for Carbon Monoxide Oxidation: Best Practices and Benchmarking Parameters. ChemCatChem 2024. doi:10.1002/cctc.202301747
  • Zasypkina, A. A.; Ivanova, N. A.; Spasov, D. D.; Mensharapov, R. M.; Sinyakov, M. V.; Grigoriev, S. A. Recent Advances in the Development of Nanocarbon-Based Electrocatalytic/Electrode Materials for Proton Exchange Membrane Fuel Cells: A Review. Catalysts 2024, 14, 303. doi:10.3390/catal14050303
  • Stiegeler, J.; Mittermeier, T.; Tsikonis, L.; Lehre, T.; Vierrath, S. Influence Factors of Platinum Dissolution in Proton Exchange Membrane Fuel Cells: A Sensitivity Study. Journal of The Electrochemical Society 2024, 171, 54517. doi:10.1149/1945-7111/ad45c3
  • Yue, Y.; Tian, J.; Ma, J.; Yang, S.; Li, W.; Huang, J.; Li, Q.; Zhan, G. Regulation of acidity properties of ZSM-5 and proximity between metal oxide and zeolite on bifunctional catalysts for enhanced CO2 hydrogenation to aromatics. Applied Catalysis B: Environment and Energy 2024, 355, 124158. doi:10.1016/j.apcatb.2024.124158
  • Hwang, W.; Lee, H.; Ahn, C.-Y.; Cho, Y.-H.; Sung, Y.-E. PDDA coating method on surface of catalyst to form carbon shell for enhancing durability of polymer electrolyte membrane fuel cells. Journal of Industrial and Engineering Chemistry 2024, 133, 401–409. doi:10.1016/j.jiec.2023.12.014
  • Zhang, J.; Chen, Z.; Yang, T.-C.; Zhang, J.; Zheng, H.; Yeh, C.-H.; Jiang, Z.; Yang, C.-M.; Liu, L.; Lai, N.-C. Interfacial engineering of high-performance Fe2P2O7-based electrocatalysts for alkaline exchange membrane fuel cells. Electrochimica Acta 2024, 485, 144098. doi:10.1016/j.electacta.2024.144098
  • Brandiele, R.; Guadagnini, A.; Parnigotto, M.; Pini, F.; Coviello, V.; Badocco, D.; Pastore, P.; Rizzi, G. A.; Vittadini, A.; Forrer, D.; Amendola, V.; Durante, C. Laser-optimized Pt-Y alloy nanoparticles embedded in Pt-Y oxide matrix for high stability and ORR electrocatalytic activity. Journal of Energy Chemistry 2024, 92, 508–520. doi:10.1016/j.jechem.2023.12.031
  • Zucconi, A.; Hack, J.; Stocker, R.; Suter, T. A. M.; Rettie, A. J. E.; Brett, D. J. L. Challenges and opportunities for characterisation of high-temperature polymer electrolyte membrane fuel cells: a review. Journal of Materials Chemistry A 2024, 12, 8014–8064. doi:10.1039/d3ta06895a
  • Danisman, B.; Zhang, G.; Baumunk, A. F.; Yang, J.; Brummel, O.; Darge, P.; Dworschak, D.; Mayrhofer, K. J. J.; Libuda, J.; Zhou, X.; Wu, M.; Spiecker, E.; Ledendecker, M.; Etzold, B. J. M. Increasing Activity of Trimetallic Oxygen Reduction PtNiMo/C Catalysts Through Initial Conditioning. ChemElectroChem 2024, 11. doi:10.1002/celc.202400070
  • Smykala, S.; Liszka, B.; Tomiczek, A. E.; Pawlyta, M. Using the IL-TEM Technique to Understand the Mechanism and Improve the Durability of Platinum Cathode Catalysts for Proton-Exchange Membrane Fuel Cells. Materials (Basel, Switzerland) 2024, 17, 1384. doi:10.3390/ma17061384
  • Yang, G.; Lee, C.; Qiao, X.; Babu, S. K.; Martinez, U.; Spendelow, J. S. Advanced Electrode Structures for Proton Exchange Membrane Fuel Cells: Current Status and Path Forward. Electrochemical Energy Reviews 2024, 7. doi:10.1007/s41918-023-00208-3
  • Do, V.-H.; Lee, J.-M. Surface engineering for stable electrocatalysis. Chemical Society reviews 2024, 53, 2693–2737. doi:10.1039/d3cs00292f
  • Niu, M.; Gao, Y.; Pan, Q.; Zhang, T. Review on factors of voltage consistency and inconsistent degradation in proton exchange membrane fuel cells. Ionics 2024, 30, 2433–2458. doi:10.1007/s11581-024-05449-w
  • Lim, K. R. G.; Kaiser, S. K.; Wu, H.; Garg, S.; Perxés Perich, M.; van der Hoeven, J. E. S.; Aizenberg, M.; Aizenberg, J. Nanoparticle proximity controls selectivity in benzaldehyde hydrogenation. Nature Catalysis 2024, 7, 172–184. doi:10.1038/s41929-023-01104-1

Patents

  • NESSELBERGER MARKUS; HASCHÉ FRÉDÉRIC; SCHÖFFLER RIANNE; EWEINER FLORIAN; NEUSCHÜTZ MARK. SUPPORTED PLATINUM PARTICLES AND THEIR USE AS CATALYST IN FUEL OR ELECTROLYSIS CELLS. EP 4239732 A2, Sept 6, 2023.
  • NESSELBERGER MARKUS; HASCHE FREDERIC; SCHÖFFLER RIANNE; EWEINER FLORIAN; NEUSCHÜTZ MARK. METHOD FOR PRODUCING SUPPORTED PLATINUM PARTICLES. WO 2019081374 A1, May 2, 2019.
  • NESSELBERGER MARKUS; HASCHÉ FRÉDÉRIC; SCHÖFFLER RIANNE; EWEINER FLORIAN; NEUSCHÜTZ MARK. METHOD FOR PRODUCING SUPPORTED PLATINUM PARTICLES. EP 3473337 A1, April 24, 2019.
Other Beilstein-Institut Open Science Activities