Supporting Information
Supporting Information features a schematic illustration of the most important steps in the synthesis process of HGS, Pt@HGS 1–2 nm and Pt@HGS 3–4 nm. TEM images of reference materials, activity data in sulphuric acid, thin-film degradation tests on a commercial Pt/C 1–2 nm catalyst as well as further IL-TEM data are also available together with the derivation of the equation for the average inter-particle distance.
Supporting Information File 1: Further experimental data. | ||
Format: PDF | Size: 929.4 KB | Download |
Cite the Following Article
Design criteria for stable Pt/C fuel cell catalysts
Josef C. Meier, Carolina Galeano, Ioannis Katsounaros, Jonathon Witte, Hans J. Bongard, Angel A. Topalov, Claudio Baldizzone, Stefano Mezzavilla, Ferdi Schüth and Karl J. J. Mayrhofer
Beilstein J. Nanotechnol. 2014, 5, 44–67.
https://doi.org/10.3762/bjnano.5.5
How to Cite
Meier, J. C.; Galeano, C.; Katsounaros, I.; Witte, J.; Bongard, H. J.; Topalov, A. A.; Baldizzone, C.; Mezzavilla, S.; Schüth, F.; Mayrhofer, K. J. J. Beilstein J. Nanotechnol. 2014, 5, 44–67. doi:10.3762/bjnano.5.5
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Xu, M.; Xiao, Y.; Zhang, J.; Xia, Y.; Liu, T.; Dong, Y.; Wang, C.-A. Dynamic Surface Dealloying for Pt3Co/C Catalysts with a Pt-Enriched Surface for the Oxygen Reduction Reaction. ACS Applied Energy Materials 2024. doi:10.1021/acsaem.4c02062
- Edjokola, J. M.; Bogar, M.; Grandi, M.; Taccani, R.; Amenitsch, H.; Marinšek, M.; Hacker, V.; Bodner, M. Humidity-Induced Degradation Mapping of Pt3Co ORR Catalyst for PEFC by In-Operando Electrochemistry and Ex Situ SAXS. Small (Weinheim an der Bergstrasse, Germany) 2024, e2407591. doi:10.1002/smll.202407591
- Ahmed, K.; Salam, M. A.; Ali Shaikh, M. A.; Murugaiah, D. K.; Shahgaldi, S.; Sweety, M. N. A Review on Most Recent Development of Electrode Structures for Proton Exchange Membrane Fuel Cell Application with Upcoming Prospects. ACS Applied Energy Materials 2024. doi:10.1021/acsaem.4c01528
- Pescher, F.; Stiegeler, J.; Heizmann, P. A.; Klose, C.; Vierrath, S.; Breitwieser, M. Pt/C catalysts synthesized in a commercial particle atomic layer deposition system enabling improved durability in fuel cells. RSC advances 2024, 14, 32358–32369. doi:10.1039/d4ra04708g
- Yue, Y.; Tian, J.; Ma, J.; Yang, S.; Li, W.; Huang, J.; Li, Q.; Zhan, G. Regulation of acidity properties of ZSM-5 and proximity between metal oxide and zeolite on bifunctional catalysts for enhanced CO2 hydrogenation to aromatics. Applied Catalysis B: Environment and Energy 2024, 355, 124158. doi:10.1016/j.apcatb.2024.124158
- Thiele, P.; Gouveia, L.; Ulrich, O.; Yang, Y.; Liu, Y.; Wick, M.; Pischinger, S. Realistic accelerated stress tests for PEM fuel cells: Operation condition dependent load profile optimization. Journal of Power Sources 2024, 617, 234959. doi:10.1016/j.jpowsour.2024.234959
- Chakrabartty, S.; Parse, H.; Krämer, M.; Kim, S.; Raabe, D.; Gault, B.; Sokol, M.; Rosen, B. A.; Eliaz, N. Ti3C2Tz Supported Pulse‐Electrodeposited Pt Nanostructures for Enhanced Acidic Electrochemical Hydrogen Evolution. ChemCatChem 2024. doi:10.1002/cctc.202401088
- Poulose, L. C.; Patil, B. S.; Kariduraganavar, S. M.; Kariduraganavar, M. Y. Graphene-Based Electrocatalytic Materials for Fuel Cells. Electrocatalytic Materials; Springer Nature Switzerland, 2024; pp 109–176. doi:10.1007/978-3-031-65902-7_4
- Wachta, I.; Balasubramanian, K. Electroanalytical Strategies for Local pH Sensing at Solid-Liquid Interfaces and Biointerfaces. ACS sensors 2024, 9, 4450–4468. doi:10.1021/acssensors.4c01391
- Ding, Y.; Fang, Z.; Yuan, Y.; Tian, M.; Yu, J.; Li, L. Particle size distribution degradation model for PEM fuel cell Pt/C catalyst based on population balance equation. Chemical Engineering Science 2024, 300, 120590. doi:10.1016/j.ces.2024.120590
- Choi, S.; Hong, D.; Yang, H.; Roh, J.; Yoo, J.; Lee, C.; Kim, M.; Yun, Y. H.; Bang, K.; Kim, J. M.; Cho, E.; Han, S. S.; Kim, D.; Lee, H. M. Enhancing Fuel Cell Durability with Heteroenergetic TaOx-Carbon Support. ACS Energy Letters 2024, 9, 4265–4272. doi:10.1021/acsenergylett.4c01946
- Du, Y.; Wang, R.; Huang, T.; Yang, X.; Yan, S.; Zou, Z. Thermal Migration to Recover Spent Pt/C Catalyst. ChemSusChem 2024, e202400956. doi:10.1002/cssc.202400956
- Nguyen, D. T. H.; Salek, S.; Shultz-Johnson, L. R.; Bélanger-Bouliga, M.; Jurca, T.; Byers, J. C.; Nazemi, A. Poly(N-Heterocyclic Carbene)-Capped Alloy and Core-Shell AuAg Bimetallic Nanoparticles. Angewandte Chemie (International ed. in English) 2024, 63, e202409800. doi:10.1002/anie.202409800
- Nguyen, D. T. H.; Salek, S.; Shultz‐Johnson, L. R.; Bélanger‐Bouliga, M.; Jurca, T.; Byers, J. C.; Nazemi, A. Poly(N‐Heterocyclic Carbene)‐Capped Alloy and Core‐Shell AuAg Bimetallic Nanoparticles. Angewandte Chemie 2024, 136. doi:10.1002/ange.202409800
- Kumar, A.; Park, E. J.; Kim, Y. S.; Spendelow, J. S. Surface Functionalization of Carbon Black for PEM Fuel Cell Electrodes. Macromolecular Chemistry and Physics 2024, 225. doi:10.1002/macp.202400092
- Choi, J. S.; Fortunato, G. V.; Jung, D. C.; Lourenço, J. C.; Lanza, M. R. V.; Ledendecker, M. Catalyst durability in electrocatalytic H2O2 production: key factors and challenges. Nanoscale horizons 2024, 9, 1250–1261. doi:10.1039/d4nh00109e
- Mymoona, P.; Shibu, E. S.; Jeyabharathi, C. Adsorbed Carbon Monoxide-Enabled Self-Terminated Au-Grafting on Pt6 Nanoclusters for Enhanced Methanol Electrooxidation. Small (Weinheim an der Bergstrasse, Germany) 2024, e2401998. doi:10.1002/smll.202401998
- Lee, C.; Hwang, C.-K.; An, J.-W.; Jang, J.-S.; Koo, B.; Kim, J. M.; Shin, K.; Lee, C. S.; Yoon, K. R. Performance enhancement of rechargeable zinc-air battery through synergistic ex-solution of multi-component Pt/CoWO4-x catalysts. Applied Catalysis B: Environment and Energy 2024, 358, 124371. doi:10.1016/j.apcatb.2024.124371
- Ayyubov, I.; Tálas, E.; Borbáth, I.; Pászti, Z.; Silva, C.; Szegedi, Á.; Kuncser, A.; Yazici, M. S.; Sajó, I. E.; Szabó, T.; Tompos, A. Composites of Titanium-Molybdenum Mixed Oxides and Non-Traditional Carbon Materials: Innovative Supports for Platinum Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells. Nanomaterials (Basel, Switzerland) 2024, 14, 1053. doi:10.3390/nano14121053
- Tian, F.; Tao, X.; Wang, J.; Huang, Z.; Tian, W.; Chen, J. Investigation of Cu-doped amorphous carbon film in improving corrosion resistance and interfacial conductivity of proton exchange membrane fuel cell. Surface and Coatings Technology 2024, 485, 130926. doi:10.1016/j.surfcoat.2024.130926
Patents
- NESSELBERGER MARKUS; HASCHÉ FRÉDÉRIC; SCHÖFFLER RIANNE; EWEINER FLORIAN; NEUSCHÜTZ MARK. SUPPORTED PLATINUM PARTICLES AND THEIR USE AS CATALYST IN FUEL OR ELECTROLYSIS CELLS. EP 4239732 A2, Sept 6, 2023.
- NESSELBERGER MARKUS; HASCHE FREDERIC; SCHÖFFLER RIANNE; EWEINER FLORIAN; NEUSCHÜTZ MARK. METHOD FOR PRODUCING SUPPORTED PLATINUM PARTICLES. WO 2019081374 A1, May 2, 2019.
- NESSELBERGER MARKUS; HASCHÉ FRÉDÉRIC; SCHÖFFLER RIANNE; EWEINER FLORIAN; NEUSCHÜTZ MARK. METHOD FOR PRODUCING SUPPORTED PLATINUM PARTICLES. EP 3473337 A1, April 24, 2019.