Plasma-assisted synthesis and high-resolution characterization of anisotropic elemental and bimetallic core–shell magnetic nanoparticles

M. Hennes, A. Lotnyk and S. G. Mayr
Beilstein J. Nanotechnol. 2014, 5, 466–475. https://doi.org/10.3762/bjnano.5.54

Cite the Following Article

Plasma-assisted synthesis and high-resolution characterization of anisotropic elemental and bimetallic core–shell magnetic nanoparticles
M. Hennes, A. Lotnyk and S. G. Mayr
Beilstein J. Nanotechnol. 2014, 5, 466–475. https://doi.org/10.3762/bjnano.5.54

How to Cite

Hennes, M.; Lotnyk, A.; Mayr, S. G. Beilstein J. Nanotechnol. 2014, 5, 466–475. doi:10.3762/bjnano.5.54

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Snellman, M.; Eom, N.; Messing, M. E.; Deppert, K. A thermal evaporator for aerosol core-shell nanoparticle synthesis. Journal of Aerosol Science 2024, 175, 106276. doi:10.1016/j.jaerosci.2023.106276
  • Zhang, H.; Su, Y.-C.; Han, Y.; Jiang, S. Molecular Dynamics Study of Melting Behavior of Planar Stacked Ti–Al Core–Shell Nanoparticles. Journal of Composites Science 2022, 6, 126. doi:10.3390/jcs6050126
  • López-Martín, R.; Burgos, B. S.; Normile, P. S.; De Toro, J. A.; Binns, C. Gas Phase Synthesis of Multi-Element Nanoparticles. Nanomaterials (Basel, Switzerland) 2021, 11, 2803. doi:10.3390/nano11112803
  • Zhang, H.; Jeon, J.; Rahmani, F.; Nouranian, S.; Jiang, S. Sintered Ti/Al core/shell nanoparticles: computational investigation of the effects of core volume fraction, heating rate, and room-temperature relaxation on tensile properties. Journal of Physics D: Applied Physics 2021, 55, 025302. doi:10.1088/1361-6463/ac2ad7
  • Snellman, M.; Eom, N.; Ek, M.; Messing, M. E.; Deppert, K. Continuous gas-phase synthesis of core–shell nanoparticles via surface segregation. Nanoscale advances 2021, 3, 3041–3052. doi:10.1039/d0na01061h
  • Sun, Y.; Chen, P.; Yu, M.; Xu, H.; Ma, T.; Hou, R.; Yu, C. Effect of Ropivacaine nanoparticles on apoptosis of cerebral vascular endothelial cells. Materials Express 2020, 10, 1230–1236. doi:10.1166/mex.2020.1732
  • Jose, P. A.; Sankarganesh, M.; Raja, J. D.; Senthilkumar, G. Synthesis of methoxy substituted pyrimidine derivative imine stabilized copper nanoparticles in organic phase and its biological evaluation. Journal of Molecular Liquids 2020, 305, 112821. doi:10.1016/j.molliq.2020.112821
  • Avdeeva, Y.; Luzhkova, I.; Ermakov, A.; Samigullina, R. F.; Vovkotrub, E. G.; Dobrinsky, E.; Zainulin, Y. Thermal Properties of Ultra- and Nanodispersed Core–Shell Structures of Ti(Mo)C and Ti(Mo)C-Co Obtained During Plasma-Chemical Synthesis by Plasma Recondensation Scheme. Metallurgical and Materials Transactions B 2020, 51, 1048–1059. doi:10.1007/s11663-020-01831-x
  • Huttel, Y.; Martínez, L.; Mayoral, A.; Fernández, I. Gas-Phase Synthesis of Nanoparticles: present status and perspectives. MRS communications 2018, 8, 947–954. doi:10.1557/mrc.2018.169
  • Xing, L.; Brink, G. H. t.; Kooi, B. J.; Palasantzas, G. Preparation of tunable-sized iron nanoparticles based on magnetic manipulation in inert gas condensation (IGC). Journal of Applied Physics 2017, 121, 024305. doi:10.1063/1.4974052
  • Hennes, M.; Jakob, A. M.; Lehnert, F.; Ross, U.; Lotnyk, A.; Mayr, S. G. Nanometer-resolved quantification of mechanical response in nanoparticle-based composites. Nanoscale 2016, 8, 9398–9404. doi:10.1039/c5nr07223a
  • Hennes, M.; Buchwald, J.; Ross, U.; Lotnyk, A.; Mayr, S. G. Equilibrium segregation patterns and alloying in Cu/Ni nanoparticles: Experiments versus modeling. Physical Review B 2015, 91, 245401. doi:10.1103/physrevb.91.245401
Other Beilstein-Institut Open Science Activities